
DISTINCT: Identity Theft using In-Browser Communications in
Dual-Window Single Sign-On

Louis Jannett
Ruhr University Bochum
louis.jannett@rub.de

Vladislav Mladenov
Ruhr University Bochum

vladislav.mladenov@rub.de

Christian Mainka
Ruhr University Bochum
christian.mainka@rub.de

Jörg Schwenk
Ruhr University Bochum
joerg.schwenk@rub.de

ABSTRACT

Single Sign-On (SSO) protocols like OAuth 2.0 and OpenID Connect
1.0 are cornerstones of modern web security, and have received
much academic attention. Users sign in at a trusted Identity Provider
(IdP) that subsequently allows many Service Providers (SPs) to ver-
ify the users’ identities. Previous research concentrated on the
standardized — called textbook SSO in this paper — authentication
flows, which rely on HTTP redirects to transfer identity tokens
between the SP and IdP. However, modern web applications like sin-
gle page apps may not be able to execute the textbook flow because
they lose the local state in case of HTTP redirects. By using novel
browser technologies, such as postMessage, developers designed
and implemented SSO protocols that were neither documented nor
analyzed thoroughly. We call them dual-window SSO flows.

In this paper, we provide the first comprehensive evaluation of
dual-window SSO flows. In particular, we focus on the In-Browser
Communication (InBC) used to exchange authentication tokens
between SPs and IdPs in iframes and popups. We automate our anal-
ysis by developing Distinct— a tool that dynamically analyzes the
JavaScript code executing as part of the SSO flow. Distinct trans-
lates the flow into a sequence diagram depicting all communicating
entities and their exchanged messages, highlights insecure commu-
nication channels, and quantifies novel threats in dual-window SSO
flows. We found that 56% of the SPs in the Tranco top 1k list sup-
port dual-window SSO. Surprisingly, 28% of the SPs implemented
dual-window SSO without using official SDKs, leading to identity
theft and XSS in 31% of these self-implemented SPs.

CCS CONCEPTS

• Information systems→Web applications; • Security and pri-

vacy→ Authentication; Authorization;Web application security.

KEYWORDS

Single Sign-On; OAuth; OpenID Connect; Web Security; Identity

ACM Reference Format:

Louis Jannett, Vladislav Mladenov, Christian Mainka, and Jörg Schwenk.
2022. DISTINCT: Identity Theft using In-Browser Communications in Dual-
Window Single Sign-On. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’22), November 7–11, 2022,
Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3548606.3560692

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560692

T
e
x
tb

o
o

k A1) Login Req.

A3) Login Res.

A2) Authentication & Consent

B1) Login Request

B2) Authentication & Consent (only in interactive flow)

B3) Login Response

IF
ra

m
e
 F

lo
w

C1) Login Request

C2) Authentication & Consent

C3.1) Login Response (only in flow with direct communication)

C3.2) Login Response (only in flow with relayed communication)P
o

p
u

p
 F

lo
w

Primary Window Popup

4) Authenticated

User Service Provider Service Provider Identity ProviderIdentity Provider

IF
ra

m
e

Identity Provider

0) Visits Website

HTTP Communication
In-Browser Communication (InBC)

RFC 6749 & OpenID

Connect Core Spec

This Paper:

Dual-Window SSO

Figure 1: Textbook vs. Dual-Window SSO Authentication

Flows. Textbook SSO uses standardized HTTP-redirect-based

communication to transfer the token within the login re-

sponse from the IdP to the SP. In contrast, dual-window SSO

uses iframe and popup flows which rely on In-Browser Com-

munication (InBC) techniques like postMessage to exchange

tokens between distinct windows.

1 INTRODUCTION

Textbook Single Sign-On. Single Sign-On (SSO) is a frequently
used and widely prevalent user authentication scheme for websites.
In 2022, David G. Balash et al. [8] showed that 86% of their recruited
participants used Google’s SSO service on at least one website.
Roughly every fourth website in the Tranco top 1k list implements
SSO to authenticate users with Apple, Facebook, and Google (cf.
§6). For starting the authentication, a user clicks on the sign-in
button on a Service Provider (SP) website (cf. Figure 1). Then, the SP
switches the user’s browser to the Identity Provider (IdP) and sends
the login request. The user logs in on the IdP and provides consent
that the IdP may share personal data with the SP. Finally, the IdP
switches the user’s browser back to the SP with the login response,
which contains SSO tokens that are used for the authentication.
In the textbook SSO flow, as defined in the OAuth 2.0 (OAuth) and
OpenID Connect 1.0 (OIDC) specifications [24, 58], login requests
and login responses are technically HTTP redirects. The security of
this type of token exchange is well studied and already addressed
by the security community [3, 5, 13, 37, 38, 39, 45, 71, 76] and
standardization bodies [40, 41, 78]. However, we show that more
than half of the websites with SSO deviate from these specifications
and are, thereby, not covered by previous work.

1553

https://doi.org/10.1145/3548606.3560692
https://doi.org/10.1145/3548606.3560692
https://creativecommons.org/licenses/by-nc-sa/4.0/
hhttps://creativecommons.org/licenses/by-nc-sa/4.0/
hhttps://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3548606.3560692
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548606.3560692&domain=pdf&date_stamp=2022-11-07

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Louis Jannett, Vladislav Mladenov, Christian Mainka, and Jörg Schwenk

Dual-Window Single Sign-On. Web applications are in a con-
stant shift towards a more app-like experience. For instance, single
page apps (SPAs) like Reddit change their local state (including the
URL address bar) without ever reloading the browser’s primary win-
dow. In these cases, textbook SSO [24, 58], which relies on HTTP
redirects, is no longer viable. Thereby, website developers must
execute the SSO flows in iframes or popups (cf. Figure 1). The major
challenge of such flows is the token transfer from the IdP’s popup
/ iframe to the SP’s primary window. Therefore, web applications
use several In-Browser Communication (InBC) techniques, such
as postMessage and Channel Messsaging. We call such flows dual-
window SSO flows if they use InBC instead of HTTP communication.
In this paper, we focus on the security of these techniques in the
context of SSO. We investigate the token exchange, which is the
most crucial part of the SSO authentication flow. If the token leaks
to an attacker, an account takeover is possible.

Monitoring In-Browser Communication. InBC does not gen-
erate any HTTP traffic. Thus, security analysts cannot use HTTP
proxies like OWASP ZAP [55] to monitor and analyze this com-
munication. There are tools, such as PMForce [64] or Burpsuite’s
DOMinvader [56], which use dynamic code execution to detect
misconfigurations on the receiving side of postMessage communica-
tions. In this paper, we concentrate on the analysis of the sending
side and consider further InBC techniques beyond postMessage (cf.
§3.3). For this purpose, we developed a novel tool for the dynamic
code analysis in web browsers: Distinct can record and analyze
InBCs between all windows involved in the SSO flow.

Security of In-Browser Communication. Cross-origin InBC
techniques allow windows of different origins to exchange mes-
sages. It provides a controlled relaxation of the Same Origin Pol-
icy (SOP), which protects a website from being accessed by an-
other cross-origin site. The best-known InBC technique is post-
Message [51]. When utilized in SSO protocols, postMessage enables
the cross-origin communication between the SP and IdP — entirely
without HTTP redirects. Like any authentication protocol that ex-
changes tokens, SSO sets rigorous security requirements. Although
postMessage provides security checks to meet these demands, for
instance, the confidentiality and authenticity of messages, these
checks are optional and developers must implement them manu-
ally. Prior work [23, 52, 63, 64, 66] has revealed that the lack of a
“security by default” approach is a substantial problem on websites,
resulting in Cross-Site Scripting (XSS) and information leaks. If
message confidentiality is not guaranteed in SSO, token leakages
leading to identity theft are the most prominent threats.

Research Questions. Recent research studied the security of
InBC [52, 64]. It focuses on how to protect the recipient against
malicious data injection. We extend this work in two dimensions.
First, we study the security of InBC in the context of user authenti-
cation through SSO, which automatically makes the actual content
of InBC messages security-relevant. Second, we focus on the protec-
tion of the sender in InBCs, which has not received much academic
attention yet. Thereby, we answer the following research questions:

(1) How are dual-window SSO flows implemented?
(2) How can we analyze dual-window SSO flows automatically?
(3) How many websites implement dual-window SSO?
(4) How secure are dual-window SSO implementations?

RQ1: Systematization of InBCs in Dual-Window SSO. In
§3, we highlight the differences between textbook SSO and dual-
window SSO. We systematically describe four SSO flows depending
on the window’s type (iframe vs. popup) and the InBC techniques
(i.e., postMessage, JS Navigate). Finally, we systematize 9 different
techniques used for the in-browser token exchange. To the best of
our knowledge, we are the first providing such an in-depth analysis.

RQ2: Analyzing Methodology. Previous research elaborated
on techniques to analyze textbook SSO with automated HTTP
traffic inspection [37, 45, 57, 62, 76]. Since InBCs do not cause any
HTTP traffic, these approaches reach their limits. We fill this gap in
§5 by presenting the open-source tool Distinct. We use dynamic
code inspection similar to Steffens et al. [64], but in contrast to
them, we also monitor the sending side. We further inspect eight
additional same-origin and cross-origin InBC techniques, where
postMessage is only one particular but significant case. Distinct
visualizes and automatically analyzes the complex SSO login flow,
highlights insecure InBCs, and generates exploits.

RQ3: Dual-Window SSO in the Wild. Our objective is to
detect, analyze, contextualize, and evaluate InBCs in SSO. We use
Distinct to evaluate five widely deployed SSO JavaScript SDKs and
the SSO implementations on the Tranco top 1k websites, of which
27% support SSO. The size of this test set is comparable to recent
research on SSO (cf. §6). We show that 56% of the SSO-supporting
websites use InBCs. This distribution proves the significant gap in
prior work. Our results are summarized in Table 2.

RQ4: Security Evaluation. Security vulnerabilities in SSO im-
plementations can have severe consequences, up to a complete
impersonation of the victim at an SP. Based on the security analysis
of the different dual-window SSO flows in §4, we created a require-
ments catalog covering security checks which need to be fulfilled
for InBCs. In our evaluation (§7), we differentiate between SPs using
official SDKs and SPs implementing SSO manually. As expected, we
do not find any security issues in the SDK-based usage. However,
we discover vulnerabilities in 31% of the websites that manually
implement the InBC in their SSO flows. These vulnerabilities range
from privacy disclosures to token theft resulting in unauthorized
access and account takeover. We summarize our findings in Table 3.

Contributions. We make the following contributions:
▶ We are the first to systematize dual-window SSO flows in

OAuth and OIDC. They deviate from the textbook SSO spec-
ification, rely on InBC instead of HTTP redirects, and were
not thoroughly studied in previous research (§3).

▶ We show howweb security threats affect the security of dual-
window SSO, and we introduce attacks on dual-window SSO
that have not yet been in the SSO community’s focus (§4).

▶ We present Distinct, the first open-source1 tool that de-
tects and analyzes InBCs in SSO automatically. On top, Dis-
tinct can automatically identify vulnerable flows and pro-
vide proof of concept exploits and sequence diagrams that
depict the communicating entities (§5).

▶ We evaluate the Tranco top 1k websites and present the land-
scape of implemented SSO flows. Our investigation reveals
that 56% of the SPs deploy dual-window SSO (§6).

1Distinct’s source code is available on https://github.com/RUB-NDS/DISTINCT. We
also provide a website running a public demo on https://distinct-sso.com.

1554

https://github.com/RUB-NDS/DISTINCT
https://distinct-sso.com

DISTINCT: Identity Theft using In-Browser Communications in Dual-Window Single Sign-On CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

▶ We discover vulnerabilities in 24 high-rankingwebsites, such
as alibaba.com, aliexpress.com, and nytimes.com, and inves-
tigate the security of five popular SSO SDKs (§7).

Responsible Disclosure. We conducted a coordinated disclo-
sure of the identified vulnerabilities to the respective website oper-
ators and helped in fixing them.

2 BACKGROUND: TEXTBOOK SSO FLOWS

The term SSO commonly refers to textbook SSO flows specified
in [24, 58], which use HTTP-based communication techniques. In
particular, textbook SSO flows are characterized by a login flow
that (1) uses URL Redirects to exchange messages between the IdP
and SP, and (2) is entirely executed within a single window, the
primary window (see Figure 1). The SP sends the login request to
the IdP, which returns the login response back to the SP via the
user’s browser if the user provides consent. The login response
contains sensitive tokens (e.g., code, id_token, access_token) which
authenticate the user on the SP.

HTTP-based Communication Techniques. The general pur-
pose of SSO is to transfer the user’s authentication on the IdP back
to the SP. Its underlying challenge is to use a communication tech-
nique that allows transferring SSO messages from one website to a
different one. In textbook SSO, the transfer is implemented using a
URL Redirect from the IdP to the SP, along with dedicated parame-
ters (e.g., code or id_token). For instance, URL Redirects can directly
change the window’s location through server-initiated redirects
(e.g., HTTP/302) or using HTML (e.g., via <meta> or <form>). Although
the origin of the redirect’s initiator and its receiver may differ, so
that redirects can transfer SSO messages cross-origin, this tech-
nique only works in the same window object. As such, it is used in
the textbook SSO’s primary window. Another popular HTTP-based
communication technique is CORS, which is however not used in
the textbook SSO flow.

3 DUAL-WINDOW SINGLE SIGN-ON FLOWS

In this section, we are the first to describe the dual-window SSO
flows. These flows have essential differences compared to the text-
book flows, resulting in severe impacts for SSO security and privacy.
We found these flows in many modern web applications like SPAs,
which do not want to lose control of the primary window by redi-
recting the user to its IdP. With dual-window SSO, developers can
use popups or iframes to hold control of the primary window dur-
ing the login process. We asked ourselves how these dual-window
flows work, as they require rigorous changes to the standardized
communication techniques. For instance, URL Redirects used by
textbook SSO are no longer feasible, as they cannot communicate
across multiple windows. To the best of our knowledge, we are the
first to provide a systematic study of dual-window SSO flows like
the popup flow (§3.1) and iframe flow (§3.2).

Textbook vs. Dual-Window SSO. The textbook protocol flow
has been the primary target in previous works. Researchers and
penetration testers identified several security issues in its imple-
mentations [3, 5, 11, 16, 17, 34, 35, 36, 37, 39, 42, 45, 61, 68, 70, 71, 73,
75, 76] and specifications [13, 15, 25, 44, 53], ranging from simple re-
play attacks to complex authentication bypasses. Therefore, they in-
spected the HTTP traffic. Instead, we found that dual-window SSO

Paper Technology Scope IFrame /
Popup

Actively
Used1

Autom.
PoC

Threat
Model

Analysis Methodology

[23] FBC, GFC IdP ✓/ ✗ ✗ ✗ WA Manual source code analy-
sis, reverse engineering

[71] FBC IdP ✗/ ✓ ✗ ✗ WA Manual analysis of Flash-
based InBC

[14] BrowserID IdP &
SP

✓/ ✓ ✗ ✗ WA+ Formal model, manual pro-
tocol analysis

[12] SPRESSO IdP &
SP

✓/ ✓ ✗ ✗ WA+ New SSO protocol, formal
model

[19] OAuth,
OIDC

IdP ✓/ ✗ ✓ ✗ JS Ex. Manual evaluation of post-
Message prevalence in SSO

This
Paper

OAuth,
OIDC

IdP &
SP

✓/ ✓ ✓ ✓ WA Automated capturing, anal-
ysis, visualization, and ex-
ploitation of InBCs

1 Custom or obsolete SSO protocols are considered as not actively used.
FBC: Facebook Connect GFC: Google Friend Connect
WA: Standard Web Attacker Model [1] WA+: Extended Web Attacker Model
JS Ex.: Requires untrusted JavaScript execution

Table 1: Prior work on SSO protocols relying on InBC. In this

paper, we (1) investigate SP implementations of dual-window

SSO, (2) introduce the iframe flow with user interaction and

two popup flows that are based on OAuth and OIDC, and (3)

open-source a tool that automatically captures, analyzes, and

exploits InBCs in dual-window SSO.

uses In-Browser Communication (InBC) techniques to exchange
SSO messages between two windows, for example, the primary
window and a login popup. These messages are not visible in the
HTTP traffic and thus, were missed in their analyses. Our study
complements these works by highlighting the risks of using InBCs
in dual-window web SSO.

Initial Studies on Dual-Window SSO. Beyond textbook SSO,
there have been initial studies on SSO protocols executed in iframes
and popups [12, 14, 19, 23, 71]. Table 1 shows an overview of them.
We provide a more thorough comparison to related works in §8.
To summarize, our work differs in (1) considering state-of-the-art
technologies; (2) additionally investigating custom SP implementa-
tions; (3) introducing new flows that have not yet been in the SSO
community’s focus; (4) presuming the web attacker with low ex-
ploit requirements; and (5) automatically analyzing and exploiting
InBCs in dual-window SSO.

3.1 Popup-Based Single Sign-On Flows

Figure 1 depicts the popup flow. The primary window opens the
IdP’s popup once the user starts the login on the SP’s website.
The user authenticates on the IdP and consents the SP’s access
permission to resources. Then, the popup flow terminates and the
popup receives the login response from the IdP. Since the user
wants to authenticate to the SP, which runs in the primary window,
the popup must return the established authentication. This return
relies on InBC between the popup and primary window. In practice,
there are two variants to perform the InBC in the popup flow.

(1) Direct Popup Flow: The IdP uses InBC to directly communi-
cate with the SP, returning the login response from the popup to
the primary window. This variant does not require the SP to act as
a relay within the popup. Expired specification drafts [26, 30, 74]
already describe this flow on an abstract level.

(2) Relayed Popup Flow: The IdP uses a URL Redirect, which is
based on HTTP communication, inside the popup to return the

1555

alibaba.com
aliexpress.com
nytimes.com

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Louis Jannett, Vladislav Mladenov, Christian Mainka, and Jörg Schwenk

login response to the SP. Then, the SP loaded in the popup forwards
the login response from the popup back to the primary window
using InBC. This flow is neither standardized nor has been the
subject of any prior research.

3.2 IFrame-Based Single Sign-On Flows

Figure 1 depicts the iframe flow. It works similar to its popup equiv-
alent, but it is executed within an iframe rather than a popup.
Therefore, the login request is opened within an iframe embedded
on the SP’s website. The user optionally authenticates and consents
within the iframe, without ever leaving the website running in the
primary window. Finally, the iframe communicates with its parent
frame to return the login response. The iframe-based flow can sig-
nificantly improve the login experience on websites. We distinguish
between two variants, each offering a different login experience.

(1) Seamless IFrame Flow: If the user is logged in at the IdP and
has granted consent, for instance, an account on the SP, the iframe
flow can provide a seamless login experience. When the iframe
receives a login request, the IdP silently authenticates the user and
immediately returns the login response to the SP (i.e., B2 in Figure 1
is skipped). In this case, the SP can make the iframe invisible such
that the user profits from a seamless, automatic sign-in.

(2) Interactive IFrame Flow: If either the authentication at the
IdP or the consent is missing, the user needs to interact with the
IdP’s iframe, i.e., click the consent button. The required user in-
teraction with the iframe has a significant downside. It enables UI
redressing and clickjacking attacks [24, §4.4.1.9], in which attackers
trick victims into interacting with the iframe without noticing it,
for instance, to obtain consent and tokens by fraud. The community
knows about these attacks and mitigates them with countermea-
sures like X-Frame-Options or the frame-anchestors CSP [40, § 4.15].
These countermeasures are disruptive because they prohibit the
consent page from being embedded. However, we found that the
Intersection Observer v2 API2 [65] allows an embedded iframe
to enforce its integrity and mitigate clickjacking risks in a non-
destructive way. The iframe’s JavaScript code can query the API
and check whether it is utterly unoccluded by other content. If the
API returns a positive indicator, it guarantees the iframe’s unob-
structed visibility to the user.

3.3 In-Browser Communication Techniques

Dual-window SSO uses InBC techniques like postMessage and in-
browser storage containers to transfer and store authentication
tokens. Various InBC techniques have been in the scope of different
research [4, 79], which we used as a starting point for our analysis.
We extend, systematize, and describe all InBC methods that can be
used to transfer authentication tokens.

Terminology.
(1) The initiator starts the communication. This is any window

object3 in the DOM, like the primary window, an iframe, or a popup.
The initiator’s security context is bound to its origin4 (protocol,
domain, port). In SSO, this is either the IdP’s or SP’s origin.

2The Intersection Observer v2 API is available in Chromium-based browsers, like Edge
≥v79, Chrome ≥v74, and Opera ≥v62 (https://caniuse.com/intersectionobserver-v2).
3https://html.spec.whatwg.org/multipage/window-object.html
4https://html.spec.whatwg.org/multipage/origin.html

(2) The receiver is the communication partner of the initiator.
Similarly, it can be any window object. The receiver’s security context
is likewise bound to its origin. It can either have the same origin as
the initiator’s origin, or it can have a different one, which we call
the cross-origin case.

(3) InBCs between an initiator and receiver use a dedicated tech-
nique. Commonly used techniques are postMessage, Channel Mess-
saging, JS Direct Access, JS Storage, and JS Navigate via the location’s
fragment. The choice of a technique affects the communication’s
security, and they can work for same-origin or cross-origin com-
munications. Cross-origin InBC techniques are exciting for SSO
since the IdP wants to send tokens to authenticate the user on the
cross-origin SP. Same-origin InBC techniques can be used only if
the initiator and the receiver share the same origin. It is notable
that all cross-origin techniques also work in the same-origin case.

(4) Techniques imply transferring an In-Browser Message (InBM)
from the initiator to the receiver. In the context of SSO, the IdPs and
SPs commonly exchange tokens. In this paper, we concentrate on
InBMs that must be kept secure and prevented from being received
by malicious actors, for instance, tokens and user data.

Security-Relevant InBC Techniques. InBC techniques must
fulfill two requirements to be security-relevant: (1) The InBC tech-
nique must work for cross-origin communications. For example,
the attacker’s website resides on a different origin than the attacked
site (cf. §4.1). Note that if a website uses same-origin InBC tech-
niques, the SOP inherently prevents other, potentially malicious
origins from sending and receiving InBMs. Thereby, we consider all
same-origin InBC techniques secure. (2) The InBC technique must
be capable of sending InBMs containing data like strings or objects.
Otherwise, an attacker can neither receive confidential InBMs like
authentication tokens nor send maliciously crafted InBMs to vul-
nerable sinks. Two InBC techniques — Cross-Origin Web Messaging
and JS Navigate — fulfill both requirements to be relevant for the
security of dual-window SSO.

(1) Cross-Origin Web Messaging: We found that two JavaScript
methods can be grouped into this technique. It includes the post-
Message API [51] and Channel Messsaging API [47]. These APIs
were designed for cross-origin communications between two win-
dows. An initiator can send a postMessage to a receiver by call-
ing the postMessage(message, receiverOrigin) method that each
window provides. The receiver can listen on the "message" event to
retrieve the InBM. Channel Messsaging works similarly. By invok-
ing new MessageChannel(), the initiator creates a channel with two
entangled ports. One port is transferred to the receiver (e.g., using
postMessage) and thus provides a two-way communication channel.

(2) JS Navigate: This technique allows the initiator to navigate
the receiver to an arbitrary URL using JavaScript. In particular,
the SOP allows cross-origin write access to the window.location

property [50]. By setting the window.location property, InBMs can
be attached to the URL using query or fragment parameters. In
contrast to URL Redirects, browsers can use JavaScript to navigate
different window objects (e.g., popups and iframes), making it appli-
cable for dual-window SSO flows. Additionally, JS Navigate behaves
special if it only changes the fragment of the URL. In that case, the
receiver window does not reload but is notified about a change in
its fragment with the "hashchange" event.

1556

https://caniuse.com/intersectionobserver-v2
https://html.spec.whatwg.org/multipage/window-object.html
https://html.spec.whatwg.org/multipage/origin.html

DISTINCT: Identity Theft using In-Browser Communications in Dual-Window Single Sign-On CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Safe InBC Techniques. The cross-origin JS Properties tech-
nique allows the initiator to query certain DOM properties of the
receiver. For instance, the SOP allows cross-origin read access to the
frames.length and window.closed properties [27, 29, 67]. In light
of same-origin techniques, we identified Same-Origin Web Messag-
ing, which incorporates the Broadcast Messaging API [46] and JS
Custom Events [48]. Both APIs work similar to postMessage but for
same-origin communications only. With JS Direct Access, (1) the
receiver can expose a JavaScript callback function that the initia-
tor invokes, or (2) the initiator can set properties in the receiver’s
DOM. By using JS Storage, the initiator can store InBMs in storage
containers like localStorage, sessionStorage, IndexedDB, and cook-
ies, and the receiver can retrieve them. JS Reload lets the initiator
tell the receiver to reload its page, i.e., using its location.reload()
function.

4 SECURITY IN DUAL-WINDOW SSO

Wepresent the new attack surface that dual-window SSO introduces
on top of the textbook security considerations [40, 41]. Therefore,
we use our study of dual-window SSO flows in §3 as a basis.

4.1 Threat Model

We rely on the web attacker model proposed by Akhawe, Barth,
Lam, Mitchell, and Song [1]. In the following, we reveal an abstract
overview of the web attacker’s capabilities, approach, and goals.

Web Attacker. The attacker hosts a malicious website, for ex-
ample, attacker.com, and can lure the victim to visit it. In con-
trast to previous research [19, 20, 21], the attacker cannot execute
JavaScript on the attacked website, for instance, sp.com. We further
exclude software or hardware deficiencies, and we assume standard-
conform, non-compromised web browsers and secure TLS.

Victim. The victim uses SSO to authenticate on an honest SP’s
website (i.e., sp.com). We assume that the victim is logged in at the
IdP (i.e., idp.com) and provided consent, i.e., allowed the IdP to share
personal data with the honest SP. Thus, the SSO authentication
takes place seamlessly and without any user interactions. To that
end, the attacks introduced in this section do not require the victim
to interact with the IdP or SP.

Approach and Goals. We assume the SSO flow to use InBC
techniques to exchange InBMs between the SP and IdP. The attacker
first embeds an SP’s or IdP’s endpoint into the malicious website,
either via iframes or popups. The victim loads the malicious web-
site, which exploits insufficient security checks of InBCs to (1) send
messages, breaking the message authenticity, or (2) receive messages,
breaking the message confidentiality. For example, attacker.com
communicates with sp.com or idp.com. We consider an attack suc-
cessful if the malicious website can receive a security-relevant SSO
message. Similarly, the attack succeeds if the malicious site can
send such an SSO message that is accepted by the receiver.

4.2 Security of InBC Techniques

Security of Cross-OriginWebMessaging. PostMessage and Chan-
nel Messsaging are the most convenient techniques for cross-origin
InBC and particularly designed by browsers for this purpose. Both
APIs can exchange arbitrary InBMs, which may include confidential
data like tokens.

(1) PostMessage: While postMessage allows the enforcement of
confidentiality and authenticity of InBMs, these guarantees are
not provided by default. To achieve confidentiality, for instance,
preventing other origins from receiving the postMessage, the initia-
tor must explicitly set the receiver’s origin in the postMessage call
(receiver origin check):
receiverWindow.postMessage(InBM, "https://receiver.com")

To ensure authenticity, for instance, assuring that the received post-
Message was actually sent by the expected initiator, the receiver
must explicitly verify the initiator’s origin in the postMessage han-
dler (initiator origin check):
receiverWindow.onmessage = (InBM) => {

if (InBM.origin !== "https://initiator.com") return
}

(2) Channel Messsaging: The initiator creates a new channel
with two entangled ports and transfers one port via postMessage
to the receiver. All InBMs sent to or received from the channel
are confidential and authentic because only the two origins in
possession of a port may communicate via the channel. Thus, the
security of the Channel Messsaging API relies on the confidentiality
and authenticity of the postMessage that transfers the port.

Security of JS Navigate. The SOP allows each window to set
the window.location property of other cross-origin windows. For
example, the initiator may set the receiver’s location as follows:
receiverWindow.location = "https://receiver.com/recv?InBM#InBM"

The InBM can be included within the URL’s query or fragment. The
receiver extracts the InBM by reading its window.location property.
The URL specified by the initiator inherently guarantees confiden-
tiality because the InBM is explicitly sent to receiver.com. However,
the receiver cannot determine and thus verify the initiator setting
the location property, which breaks the InBM’s authenticity. In
practice, well-known Cross-Site Request Forgery (CSRF) protection
mechanism like CSRF tokens compensate this loss of authenticity.
Their concept is simple yet effective: (1) The initiator and receiver
share a common secret.5 (2) Whenever the initiator sets the re-
ceiver’s location, it includes the secret in the InBM. (3) The receiver
extracts the secret from the InBM and validates it. If the validation
succeeds, the receiver can reason that the InBM was actually sent
by the trusted initiator.

4.3 Attacks in Dual-Window Single Sign-On

We identified three attacks in dual-window SSO that have not yet
been in the SSO community’s focus. The first two attacks target the
confidentiality; the third targets the authenticity of SSO messages.

Security-Relevant SSO Messages. The most crucial message
during the SSO login process is the login response. It contains
confidential tokens granting access to the victim’s identity and
resources. Hence, its confidentiality must be protected such that
it may only be received by the authorized SP, which issued the
related login request and received the victim’s consent. Similarly,
only the IdP that received the login request is allowed to issue the
related login response to the SP. In summary, the attacker aims to
(1) receive a login response from a flow that the victim started on
the SP, and (2) send a maliciously crafted login response to the SP.
5In SSO, the state query parameter [24, § 10.12] serves as a secret that is shared
between the IdP and SP to ensure that location writes are authentic.

1557

attacker.com
sp.com
sp.com
idp.com
attacker.com
sp.com
idp.com
receiver.com

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Louis Jannett, Vladislav Mladenov, Christian Mainka, and Jörg Schwenk

Attack Impact: Loss of Confidentiality.
(1) Token Leak (TL): If authentication tokens leak to the attacker,

identity theft, account takeovers, and unprivileged resource ac-
cesses are possible. Depending on the token redemption’s stealthi-
ness, the victim may not notice the attacker’s account access.

(2) Privacy Leak (PL): If private data leaks to the attacker, the
victim’s identity may be revealed. Likewise, other user-identifiable
information like the victim’s email, address, and profile picture
may leak. We consider token leaks enabling account takeovers as
inherent privacy leaks.

Attack Impact: Loss of Authenticity.
(1) Cross-Site Account Signin (XSAS): The victim is logged into

the attacker’s account, allowing the attacker to track the victim’s
activities. For example, if the victim uploads a file, it is uploaded
into the attacker’s account, and the attacker may retrieve it.

(2) Cross-Site Account Linking (XSAL): The victim is already
logged in on the SP’s website with credentials (i.e., username and
password). Later, the victim decides to connect the account on the
SP to an IdP. If the attacker sends a malicious login response, the
victim’s account on the SP is linked to the attacker’s account on
the IdP. The victim can still use the credentials to log into the SP.
On top, the attacker can use the SP’s SSO service to log into the
victim’s account (i.e., account takeover).

(3) DOM-based Cross-Site Scripting (DOM-XSS): The SP processes
the login responsewithin JavaScript sinks that enable DOM-XSS [33],
like eval() and innerHTML. The attacker sends a malicious login re-
sponse to exploit the sinks and gain DOM-XSS on the SP.

Attack 1: Wildcard Receiver Attack (WRA). Figure 2 depicts
a malicious website exploiting the WRA to receive a login response.
The attack works as follows: The victim visits the malicious website,
which imitates the SP on which the victim has an account with SSO.
The malicious site starts the SSO login flow that is normally started
by the SP. Therefore, the attacker sends the SP’s login request to
the IdP or to the SP, which forwards it to the IdP. Both parties
successfully verify that the given origin, which should receive the
login response (i.e., sp.com), is authentic and trusted. Thus, the IdP
generates the login response, which is returned to the malicious
website. We distinguish between two cases:

(1) Direct Communication: The IdP directly returns the login
response to the primary window. However, the IdP fails to protect
its confidentiality, as Cross-Origin Web Messaging is used insecurely
in this context. The postMessage wildcard "*" allows all origins to
receive the login response. Hence, the IdP leaks the login response,
which likely contains tokens or privacy-sensitive data, to the at-
tacker’s site. Direct communications are used by both iframe flows
and the direct popup flow.

(2) Relayed Communication: In this case, the IdP first uses a
URL Redirect to return the login response to the SP running within
the popup. Second, the SP uses insecure InBC to return the login
response from the popup to the primary window. Thus, the SP leaks
the login response to the attacker’s site. Relayed communication is
used exclusively in the relayed popup flow.

Attack 2: Malicious Receiver Attack (MRA). Figure 2 illus-
trates the MRA, which is closely related to the WRA but with an
additional twist. The InBC techniques postMessage and JS Navigate
are used securely, as they explicitly include the receiver’s origin
to protect the confidentiality. However, the trustworthiness of the

Primary Window

Victim

Attack 1

Wildcard

Receiver

(WRA)
2) Login Response: Received via direct or relayed communication

0) Visits attacker.com

1) Login Request: i dent i t y = " SP" , or i gi n = " sp. com"

pr i mWi n. post Message(I nBM, " * ")

Service Provider Identity Provider

Popup / IFrame

Attacker

2) Login Response: Received via direct or relayed communication

1) Login Request: i dent i t y = " SP" , or i gi n = " at t acker . com"

pr i mWi n. post Message(I nBM, " at t acker . com")
pr i mWi n. l ocat i on = " at t acker . com/ r ecv?I nBM#I nBM"

1) Login Response: Inject

i f r ame| popup. post Message(mI nBM, " sp. com")
i f r ame| popup. l ocat i on = " sp. com/ r ecv?mI nBM#mI nBM"

 domXssSi nk(mI nBM)
 l ogi nWi t hToken(mI nBM)
 l i nkAccount ToSSO(mI nBM)

Attack 2

Malicious

Receiver
(MRA)

Attack 3

Malicious

Initiator

(MIA) 2) Login Response: Process

HTTP Communication
In-Browser Communication (InBC)

Legend:

Figure 2: Attacks in Dual-Window Single Sign-On. In the

Wildcard Receiver Attack (WRA), the receiver’s origin of the

login response is not specified. In the Malicious Receiver At-
tack (MRA), the receiver’s origin of the login response is not

properly validated. Thus, authentication tokens may leak. In

theMalicious Initiator Attack (MIA), the SP does not validate

the initiator’s origin of the login response. Thus, malicious

sites may inject a malicious login response or JavaScript code.

receiver’s origin is not or not properly validated by the SP or IdP.
Thus, the attacker replaces the SP’s origin (sp.com) with the mali-
cious origin (attacker.com). The login response is finally sent to the
non-verified origin attacker.com, running in the primary window.

Attack 3: Malicious Initiator Attack (MIA). Figure 2 shows
the MIA. The attacker’s website imitates the IdP to send a login
response to the SP. In the MIA, the SP does not or not properly ver-
ify the authenticity of the login response. Best practices to counter
the attack is to perform a string comparison on the initiator’s ori-
gin, for example, to verify InBM.origin ==? "https://idp.com" in
postMessage. Examples of vulnerable checks include comparisons
with overly lax regular expressions or string comparison methods
such as startsWith and includes. Our attacks assume the attacker
to have an account on the IdP and to execute the SSO flow on
the SP. Thus, the attacker receives a “malicious” login response
from the IdP. If the victim visits the malicious site, the attacker
sends the malicious login response to the SP which unleashes the
following impact: (1) The SP uses the login response to log the
victim into the attacker’s account (cf. XSAS, §4.3). (2) If the victim
is already logged in on the SP, the SP links the victim’s account to
the attacker’s account on the IdP (cf. XSAL, §4.3). (3) The SP passes
the login response into dangerous JavaScript sinks like eval. The
attacker adapts the login response to exploit the sink and gain XSS
on the SP (cf. DOM-XSS, §4.3).

1558

sp.com
sp.com
attacker.com
attacker.com

DISTINCT: Identity Theft using In-Browser Communications in Dual-Window Single Sign-On CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
In

-B
ro

w
s
e
r

S
S

O

F
lo

w
 A

n
a
ly

s
is

Backend
ProcessingChrome Extension

<scr i pt >. . . </ scr i pt >

...

PostMessage

Report

JSStorage

Report Sequence

Diagram

Database

Live-Monitor Communication-Inspector

Figure 3: Distinct’s Design and Architecture. The Chrome

extension (Live-Monitor) sends all InBC techniques with

their InBMs in reports to the backend (Communication-

Inspector), which post-processes them and, inter alia, out-

puts a sequence diagram highlighting threats.

5 DISTINCT: DYNAMIC IN-BROWSER SINGLE

SIGN-ON TRACER INSPECTING NOVEL

COMMUNICATION TECHNIQUES

Prior research assessed SSO implementations by analyzing the
HTTP traffic. This approach misses crucial SSO messages sent via
InBC techniques at runtime. We are the first filling this gap by
providing Distinct as an open-source contribution to SSO imple-
menters, researchers, and pentesters, raising awareness for the se-
curity pitfalls of dual-window SSO. Distinct automates the (1) cap-
turing, (2) detection, (3) visualization, (4) security analysis, and
(5) exploitation of dual-window SSO flows with InBCs.

5.1 Design and Architecture

Distinct is designed to monitor and analyze the InBC techniques
sending InBMs across windows at runtime. Therefore, Distinct
executes two components: Live-Monitor and Communication-
Inspector (see Figure 3).

Components. (1) Live-Monitor is a Chrome extension that
runs in the context of all browser windows (i.e., primary windows,
iframes, and popups), injects a monitoring script into each page,
and gets access to the entire site, including its DOM and all APIs.
Live-Monitor transfers the collected runtime data in reports to
a backend, the Communication-Inspector. For instance, a re-
port contains detailed information about a specific postMessage
that is sent or URL that is assigned to a window’s location.href.
(2) Communication-Inspector is a Python backend that gath-
ers, stores, inspects, and visualizes the reports generated by Live-
Monitor. Therefore, it serves an API and a web application. The
API first receives the reports from Live-Monitor, and then triggers
their post-processing. During the post-processing,Communication-
Inspector automatically performs the flow visualization, security
analysis, and exploitation. The web application is Distinct’s pri-
mary control interface allowing analysts to start a new analysis
and inspect the results in a searchable table and sequence diagram.

Workflow. We designed Distinct as a containerized Docker
application that is straightforward to install and operate via a single
web interface. Distinct can be optionally preconfigured with cre-
dentials for the IdPs to automate their authentication and consent
prompts. To start a new analysis of an SSO flow on a target web-
site, the analyst has to manually submit its URL in Distinct’s web
interface. Then, the web interface shows the Chromium browser,

which is connected via NoVNC6. The browser automatically loads
Live-Monitor and navigates to the targeted website. Next, the
analyst has to manually locate and click the website’s SSO login
button to start the SSO authentication flow. If the IdP’s creden-
tials were preconfigured, the authentication and consent step on
the IdP is automated. Otherwise, the analyst has to manually au-
thenticate on the IdP and click the consent button. During the
entire login flow, Live-Monitor automatically reports all InBCs to
the Communication-Inspector, which starts the automated post-
processing. Finally, the analyst can manually inspect the analysis
results in the web interface. It displays the login flow’s sequence di-
agram showing the detected security threats. If threats are detected,
the analyst can trigger the automated exploitation, manually verify
its success, and perform minor changes if necessary.

Analysis Approaches. To analyze SSO-related InBMs, we need
to detect the invocations of APIs that are used by the InBC tech-
niques in JavaScript. Therefore, we examined the static and dynamic
JavaScript analysis approaches.

Static analysis investigates the JavaScript code before the browser
executes it. Although this is a reasonable approach in numerous
instances, it has its downsides: (1) We cannot determine the script’s
execution time and order. (2) We cannot detect the window in
which the script is executed. (3) JavaScript minification and obfus-
cation complicates the analysis. These reasons impede the SSO flow
reconstruction so we decided to use a dynamic analysis.

Dynamic analysis monitors the code executing at runtime to
detect API calls. As a side effect, the runtime analysis solves chal-
lenges induced by JavaScript minification and obfuscation. It also
provides inherent information about the time of code execution,
and we can determine the window that runs it. Thus, we consider
the dynamic analysis as a robust approach for capturing the API
calls of InBC techniques in their execution time and window.

5.2 Live-Monitor

Live-Monitor performs an automatic runtime analysis to answer
the following questions: (1) Which textbook or dual-window SSO
flow is started? (2) Does the SP use an SDK or manual implementa-
tion? (3) How are the InBC techniques used?

Automated Flow Detection. Live-Monitor detects SSO mes-
sages like the login request and login response based on known
recognition patterns from [43]. For instance, if it observes a re-
quest to accounts.google.com that contains well-known SSO pa-
rameters [24, 58] like client_id, it marks this request as the login
request and sets the flow’s IdP to Google. Similarly, it detects a
login response if it contains well-known tokens [24, 58] like code,
access_token, or id_token. For the first time, Live-Monitor rec-
ognizes dual-window SSO flows by mapping the SSO messages to
their windows, iframes, and popups. Thereby, Live-Monitor can
automatically discern textbook flows from dual-window flows.

Automated SDKDetection. To automatically detect SSO SDKs,
we extended Live-Monitor with new recognition patterns since
they were not covered in [43]. For this purpose, we executed the
SSO logins with the SDKs once, analyzed the messages, and ex-
tracted recognition patterns for each SDK. We noticed that the

6 NoVNC allows us to display the graphical desktop of a remote computer in a web
interface. More information is available on https://novnc.com.

1559

accounts.google.com
https://novnc.com

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Louis Jannett, Vladislav Mladenov, Christian Mainka, and Jörg Schwenk

SDKs’ login requests involved SDK-specific parameters in addition
to the well-known SSO parameters, for instance, frame_id (Apple),
channel_url (Facebook), and ux_mode (Google). We implemented
them as rules to detect whether a website uses an SSO SDK.

Automated InBC Detection. Live-Monitor can identity a
window’s hierarchy with a recursive algorithm. Without this hier-
archy, it would not be able to track the InBCs between iframes and
popups. We express a window’s hierarchy as its relation to the pri-
mary window. For example, top.frames[1].popups[0] denotes the
first popup opened by the primary window’s second iframe. Based
on our preliminary studies in §3.3, we need a systematic approach
capable to (1) automatically detect the usage of InBC techniques
throughout the login flow, and (2) determine their related InBMs,
for instance, the exchanged data. The challenge is the engineering
and implementation of reliable InBC observers. We identified six
main approaches for monitoring: Passive Monitoring, Event Listener,
Getter & Setter, Value / Function Wrapper, Proxies, and Prototypes.
Live-Monitor modifies JavaScript objects, functions, and APIs
to capture variable values and messages within the browser. As a
result, it can automatically determine InBCs and extract their ini-
tiators, receivers, and messages. As an example, we provide further
insights on how we monitored postMessage in the following.

Automated PostMessage Detection. Live-Monitor detects
the postMessage receivers similar to Meiser et al. [52] and Steffens et
al. [64]. For instance, it hooks the addEventListener() function on
each window andwraps postMessages in JavaScript Proxy objects [49]
to track accesses on their properties. Thus, Live-Monitor detects
and traces the initiator origin checks via the postMessages’ origin
property, and reports all property accesses to the Communication-
Inspector. The detection of postMessage initiators was more chal-
lenging since no dynamic, in-browser detection systems have been
implemented yet. Live-Monitor similarly hooks the postMessage()
function on each window to get access to its arguments, for in-
stance, the receiver origin check. However, these hooks override the
browser’s native postMessage function such that the postMessage
receiver loses access to its initiator. To restore this connection, Live-
Monitor sets a breakpoint on the receiver and uses the Chrome
DevTools protocol [7] to run debugging actions automatically. If a
postMessage hits the breakpoint on the receiver, the debugger auto-
matically attaches and steps back to the initiator in the execution
trace. Once there, it sets the original origin and source properties of
the postMessage to restore the reference to the initiator. To the best
of our knowledge, this approach detects all postMessage initiators.
In theory, receivers could identify proxied postMessages by check-
ing its inheritance from the MessageEvent interface. In practice, we
could not find any receivers implementing this check.

5.3 Communication-Inspector

The Communication-Inspector implements: (1) the automated
threat detection, (2) the automated flow visualization & threat high-
lighting, and (3) the automated Proof of Concept (PoC) generation.

Automated Threat Detection. The threat detection engine
that is built into the Communication-Inspector has access to
the entire database of InBCs and InBMs. It operates passively on
that database and avoids the modification of communications to

not interfere with the complex session dependencies in SSO. We
implemented three threat detection approaches:

(1) Wildcard Receiver Patterns: The postMessage wildcard "*"

is harmful as information leaks to the attacker. Since we store all
postMessage calls with their arguments in the database, we can high-
light all leaky postMessages that are using the "*". For instance, the
third report in the sequence diagram (cf. Figure 4) uses the wildcard
origin leaking the user’s email, and it is marked accordingly.

(2) Initiator Verification Patterns: The origin property of a post-
Message provides a reliable pattern to detect vulnerable initiator ori-
gin checks. Live-Monitor tracks all accesses to this property dur-
ing runtime and provides them to the Communication-Inspector
for further analyses. Prior work [52, 63, 64] performed in-depth
assessments of the postMessage initiator verification, so we could
safely adopt their origin-related patterns: If the origin is not ac-
cessed, no check is performed at all. Invocations of deficient or
error-prone string functions on the origin are also a reliable pat-
tern. For instance, startsWith(), endsWith(), indexOf(), includes(),
match(), and search() are best known to be used in insecure initia-
tor origin checks, which we mark accordingly. Based on Terjanq’s
XSS-challenge [69], we implemented a verification pattern to iden-
tify the vulnerable window.origin check, which has not been consid-
ered in the context of SSO before. In addition to prior work [52, 63,
64], we consider JS Navigate. Since it does not provide a mechanism
to verify its initiator, we mark all of them as potentially forgeable.

(3) Bottom-Up Analysis: If no wildcards are used, it is difficult
to determine if the attacker can manipulate the receiver’s origin.
To solve this problem, we implemented a bottom-up analysis into
the Communication-Inspector. We start the analysis with the
receiver’s origin specified in the postMessage or JS Navigate. Then,
we search backward in our database for user-manipulable parame-
ters that match this origin, and we highlight all occurrences. The
analyst manually tests whether an active manipulation of the de-
tected parameter influences the receiver’s origin in the postMessage
or JS Navigate. In that case, the parameter is not accurately vali-
dated. Thus, the MRA is possible. Figure 4 shows an example of
the bottom-up analysis. The postMessage’s receiver origin is found
to be also included in the login request’s origin query parameter.
The IdP must validate the login request and only allow origins that
are whitelisted by the SP.

Automated FlowVisualization. Distinct’s Communication-
Inspector automatically generates sequence diagrams to visualize
the dual-window SSO flows. In addition, it highlights security-
relevant messages and recognized threats. Figure 4 depicts a se-
quence diagram of a popup flow. First, the SP in the primarywindow
registers an event listener, which safely validates the initiators of
received InBMs. Second, the SP opens a popup, navigates to the IdP,
and sends the login request. Third, the IdP sends two postMessages
back to the SP before it closes the popup: (1) The first postMessage
contains the user’s email but does not set a receiver origin. Thus, it
is susceptible to the WRA enabling a privacy leak. (2) The second
postMessage contains an authentication token and sets its receiver
origin to the SP’s origin. The bottom-up analysis reveals that the
postMessage’s receiver origin matches the login request’s origin
parameter. The analyst must manually verify whether an active
manipulation of this parameter is reflected in the postMessage’s
receiver origin.

1560

DISTINCT: Identity Theft using In-Browser Communications in Dual-Window Single Sign-On CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Report 5: Popup Closed

Execution
Time

top.popups[0]

(idp.com)

Report 3: PostMessage Sent

Receiver Origin: *

Data: user_email=alice@example.com

Report 1: Register Event Listener

Callback: (IBM) => { if (IBM.origin === "idp.com") { ... } }

top

(sp.com)
Execution Window

Bottom-Up
Analysis

Report 2: Popup Opened

URL: idp.com/auth?client=sp&origin=sp.com

Report 4: PostMessage Sent

Receiver Origin: sp.com

Data: id_token=XYZ

Related Report: 2

Figure 4: Sequence Diagram of a Dual-Window SSO Flow.

The diagram allows the analyst to determine (1) when the

InBCs occurred, and (2) inwhichwindows theywere involved.

Confirmed or potential threats are highlighted.

Automated PoC Generation. We implemented an automated
PoC exploitation engine into the Communication-Inspector. The
engine relies on Distinct’s database and threat detection engine. It
automatically builds, outputs, and deploys a PoC website as HTML
file with inline JavaScript. We provide exemplary PoCs exploiting
our vulnerable test service in the demo running on distinct-sso.com.

For exploiting WRA and MRA, the PoC website simulates the
SP, initiates the SSO flow, and, if the attack is successful, receives
the login response that the IdP issued for the SP. Therefore, the
engine proceeds as follows: (1) It determines the window in which
the login request is sent. (2) It identifies the initial URL that is first
opened in this window. This step compensates any redirections
executed before the login request is sent to the IdP. (3) The PoC
website opens / embeds the initial URL in a popup / iframe, starting
the SSO flow. (4) To fully simulate the SP, the PoC site sends all
captured InBMs to the popup / iframe that were formerly sent by
the SP to them. In some cases, this is required to trigger the token
issuance. (5) The PoC website receives the login response in its
registered receiver if its confidentiality is broken.

For exploitingMIA, the PoCwebsite simulates the IdP, embeds or
opens the SP’s login page, and sends the login response to the SP. If
the attack is successful, the SP starts processing the login response.
Therefore, the engine proceeds as follows: (1) It determines all
active receivers and the windows in which they are registered. (2) It
embeds or opens the receivers’ windows in iframes or popups. (3) It
sends all InBMs to the receivers’ windows that were sent by the
former initiators to them. (4) If the receivers fail to verify their
authenticity, they start to process the InBMs.

5.4 Limitations

Automated Vulnerability Exploitation. Distinct can exploit
the WRA. However, the exploitation of the MRA and MIA is lim-
ited and may require adjustments on the PoC. Steffens et al. [64]
unveiled the significant engineering to automatically exploit inse-
cure receivers for XSS. For us, the SP’s non-uniform parameters
and session dependencies add another layer of complexity. Their
automated detection and active testing is open for future research.

Automated Vulnerability Verification. Not every insecure
usage of InBC leads to account takeover or other vulnerabilities.
Thus, Distinct implements patterns to filter security-relevant mes-
sages, but experts must manually verify the results. During our
research, we determined that SPs use many custom parameters to
exchange encoded tokens or user data. It is hard to determine if an
insecurely exchanged InBM contains security-relevant data.

SSO Login Automation. We manually clicked the SSO buttons
on the SPs for reliability and technical reasons. We still evaluated
two strategies to fully-automate the logins: (1) extend Distinct to
automatically find and execute SSO logins, or (2) take advantage of
prior works. Previous works have been able to conduct large-scale
web and SSO security studies post-authentication [9, 17, 28, 54, 61,
76]. They all required significant engineering to achieve an unsatis-
factory detection rate, which by far surpasses the scope and focus
of this paper. We failed to find a tool that can serve our require-
ments: (1) open-source availability, (2) support for state-of-the-art
SSO logins in today’s landscape, and (3) support for sign-ins with
Apple, Google, and Facebook. [17, 54, 61] only detect SSO logins,
but do not execute them. [28, 76] only support Facebook, while [9]
additionally supports Google. However, [9, 17, 28] are not publicly
available, and our contact attempts were unsuccessful. Overall, non-
maintained tools (i.e., [76] was last updated 7 years ago) cannot
execute SSO as it’s found in today’s, fast-paced SSO landscape. That
said, a generic open-source framework for automated logins with
state-of-the-art SSO is desirable and left for future work.

Improve Code Coverage. Although Distinct’s dynamic anal-
ysis suites well for our empirical evaluation (cf. §4), it may not
cover all execution paths of a website. For instance, certain user
interactions with the SP may invoke vulnerable API calls, which
Distinct cannot detect if they are not executed. Distinct can only
report on the code that is executed in the SSO flow.

Further Identity Providers. We focused on the top three IdPs
and found that their SDKs are secure (cf. §4). However, there are
numerous other IdPs on the Internet. Whether they provide offi-
cial SDKs and whether they are as secure as Apple’s, Facebook’s,
and Google’s SDKs is left open. Distinct might also be useful for
companies that deploy their own IdP with dual-window SSO flows.

6 EVALUATION: DUAL-WINDOW SINGLE

SIGN-ON LANDSCAPE

In this section, we present the distribution of dual-window SSO in
the wild. We split our landscape analysis into two parts: (1) buttons
starting the textbook or dual-window SSO flows, and (2) websites
supporting textbook or dual-window SSO flows.

Methodology. In 2021, Morkonda et al. [54] showed that Apple,
Facebook, and Google are the three most predominantly supported
IdPs on the Alexa Top 500. Thus, we focused on these three IdPs. We
studied their implementation guidelines and SSO SDKs [2, 10, 18] to
determine the flows they support. To select a representative list of
SPs, we used the top 1k domains in the Tranco list7 [32]. Compared
to related work [17, 39, 54, 70, 75], the number of analyzed websites
in this paper is similar or larger. For each website, we started
an analysis run in Distinct’s web interface (cf. “Workflow” in
§5.1). We manually clicked on the SSO buttons of each website.

7Generated on 22 July 2021. Available at https://tranco-list.eu/list/ZGXG.

1561

distinct-sso.com
https://tranco-list.eu/list/ZGXG

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Louis Jannett, Vladislav Mladenov, Christian Mainka, and Jörg Schwenk

Meanwhile, Live-Monitor automatically traced the login flows.
Live-Monitor’s automated flow and SDK detection finally reveals
implementation details regarding the SSO landscape, which we
summarize in Table 2.

SSO Detection Rate. The false positive rate (FPR) for Live-
Monitor’s SSO and SDK detection is 0%, respectively the true
positive rate (TPR) is 100%. Since we manually clicked on the SSO
buttons on all 1k websites, we confirmed that Live-Monitor cor-
rectly identified and classified all textbook and dual-window SSO
flows. Since the login request is uniquely detectable, this accuracy is
reasonable. However, we noticed that Google published a new SDK
during Distinct’s development. Thus, we extended Live-Monitor
with a new recognition pattern to detect it.

6.1 Part 1: Buttons starting SSO Flows

We used Distinct’s Live-Monitor to count the number of SSO
buttons on the Tranco top 1k websites (see part 1 in Table 2). Note
that there is not a one-to-one connection between websites and
buttons. For example, a single website can include multiple SSO
buttons, each using a different IdP or flow. We identified a total of
683 SSO buttons: 414 buttons started dual-window flows (61%); 269
buttons started textbook flows (39%).

Manual Integrations. All IdPs provide public SSO APIs for
manual SSO integrations. These APIs allow websites to implement
the textbook flow or relayed popup flow, which use URL Redirects
to return the login response to the SP in the primary window or
popup, respectively. For example, we found 57 buttons starting
the textbook flow with Apple manually. Interestingly, 153 buttons
started the relayed popup flow. However, SDKs do not support this
flow, thus, it is always implemented manually.

SDKs. Apple and Facebook each provide a single SDK: Sign
in with Apple (SiwA) and Facebook Login (FLg). Google offers
three SDKs: Sign in with Google (SiwG), Google Sign-In (GSI),
and Google One Tap (GOT). Unsurprisingly, buttons provided by
Google SDKs are the most prevalent (3 + 114 + 74 = 191). SiwA

starts the direct popup flow if its “use popup” option is set. This was
the case for 18 buttons on the Tranco top 1k websites. Otherwise,
it initiates the textbook flow, for which we found 12 buttons. FLg
starts the direct popup flow if the user has to authenticate or con-
sent. Otherwise, it issues a CORS request to fetch tokens from the
backend. We identified 53 FLg buttons across the landscape. SiwG

is the successor of GSI and starts the textbook or direct popup
flow, based on the “ux mode” option. We found only 3 buttons pro-
vided by this SDK, which is the by far least distributed SDK in our
landscape. GSI is the predecessor of SiwG and now discontin-
ued as legacy SDK, but as we show, still the most distributed SDK.
If GSI requires user interaction, it starts the direct popup flow.
Otherwise, it launches the seamless iframe flow to automatically
log the user into the SP. If GSI is in its seamless configuration,
the user must not explicitly click a button — thus, no button is dis-
played. However, we still consider this as a “simulated” click, which
the SDK automatically performs. This example illustrates how a
single SDK on one website can start multiple flows, depending on
the given circumstances. GOT initiates the seamless iframe flow,
unless the user has not yet consented. Similar to GSI, GOT only
“simulates” the button click in its seamless variant. To the best of

our knowledge, GOT is the first SDK implementing the interactive
iframe flow with the Intersection Observer v2 API (cf. §3.2). As for
non-supported browsers, GOT falls back to the popup flow.

6.2 Part 2: Websites with SSO Flows

We wanted to break down the counting of buttons in the left part
of Table 2 to the number of websites. Out of the Tranco top 1k, we
identified 273 websites providing SSO logins with at least one of the
three IdPs. For the first time, Table 2 proves that dual-window SSO
exceeds textbook SSO nowadays. From 273 websites, 153 implement
dual-window SSO (56%), surpassing textbook SSO implemented by
134 websites. This distribution elucidates that previous research
focusing on textbook SSO implementations missed crucial InBCs
and InBMs in 56% of the most popular websites with SSO. Notably,
every second website with dual-window SSO uses manual integra-
tions (77 of 153, 50%). This insight strengthens the significance of
our research targeting the security of dual-window SSO.

Manual Integrations. Table 2 suggests that more than twice as
many websites prefer manual SSO integrations over SDKs. Manual
integrations primarily use textbook SSO on 127 websites. Yet, 77
sites manually integrate dual-window SSO with the relayed popup
flow. Interestingly, previous works did entirely miss this flow, leav-
ing a considerable gap in the security research on SSO. We prove
the threat as we discover severe vulnerabilities in this flow (see §7).

SDKs. Table 2 proves that websites primarily use SDKs to run
dual-window flows (92). Only 13 websites use SDKs configured to
run the textbook flow. We found that the direct popup flow (76) and
seamless iframe flow (77) are equally distributed. Yet, 37 websites
implement the seamless iframe flow with GOT.

7 EVALUATION: DUAL-WINDOW SINGLE

SIGN-ON SECURITY

We used Distinct to conduct a security analysis on the Tranco
top 1k SSO landscape. Our results show that 31% of websites with
manual integrations of dual-window SSO fail to implement InBCs
securely. Even worse, we could confirm account takeovers, severe
privacy leaks, and XSS on prominent websites like alibaba.com,
aliexpress.com, and nytimes.com.

Methodology. In our landscape analysis, we executed and
traced the dual-window SSO flows on 153 distinct websites by click-
ing on 414 buttons (cf. Table 2). For our security analysis, we man-
ually investigated the sequence diagrams of these flows to confirm
the detected threats. In specific, we used the Communication-
Inspector’s security indicators as a starting point for our analyses.
For the WRA, an indicator refers to a leaky InBM. We have to man-
ually confirm whether the InBM carries tokens or private data that
are relevant for an attacker. For the MRA, an indicator denotes a
parameter that we have to test actively. For the MIA, an indicator
references a receiver that does not properly validate the authenticity
of InBMs. If the Communication-Inspector detects an indicator,
we trigger the automatic PoC generation and deployment. In the
victim’s browser, we manually verify whether the PoC could re-
ceive the leaky InBM or successfully send an InBM to a vulnerable
receiver. In some cases, we had to manually make minor changes to
the PoC like changing specific parameters or choosing a particular
domain name for the web server.

1562

alibaba.com
aliexpress.com
nytimes.com

DISTINCT: Identity Theft using In-Browser Communications in Dual-Window Single Sign-On CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Part 1: Buttons starting SSO Flows Part 2: Websites with SSO Flows

Manual SDK (websites can have multiple buttons)
 SiwA FLg SiwG GSI GOT

∑
Manual SDK Manual or SDK

� Textbook SSO 57 90 109 12 ✗ 1 ✗ ✗ 269 ≥1x � 127 13 134

6
D
u
a
l
-
W

i
n
d
o
w

S
S
O

Popup Flow
Relayed 30 59 64 ✗ ✗ ✗ ✗ ✗ 153 77 ✗ 77
Direct ✗ ✗ ✗ 18 53 2 57 0 130 ✗ 76 76

IFrame Flow
Seamless ✗ ✗ ✗ ✗ ✗ ✗ 57* 37* 94 ✗ 77 77
Interactive ✗ ✗ ✗ ✗ ✗ ✗ ✗ 37 37 ✗ 37 37∑

30 59 64 18 53 2 114 74 414 ≥1x 6 77 92 153

� +6 87 149 173 30 53 3 114 74 683 � or 6 200 97 273

Table 2: The dual-window SSO Landscape. In sum, 273 of the Tranco top 1k websites (27%) support SSO logins. We manually

started 683 SSO flows on 273 websites and traced the entire authentication with Distinct. Distinct found that 153 of 273

websites (56%) implement at least one dual-window
6

SSO flow, superseding the textbook
�

distribution (134 sites). Moreover,

twice as many websites prefer manual integrations over the use of SDKs. We mark flows that are not supported by IdPs as not

applicable (✗). Otherwise, we denote the number of buttons (part 1) or websites (part 2) that use this flow.
*
The seamless iframe

flow does not require the user to click the button but instead automatically “simulates” the click.

Vulnerability (§4.3) Impact (§4.3) Redeem Automatic Manual Responsible
Rank SP IdP SSOaaS WRA MRA MIA TL PL XSAS XSAL XSS Token PoC Verify Disclosure

51 nytimes.com g – ✓

102 aliexpress.com g – ✓

141 aparat.com – ➠

156 cnet.com g CBS ✓

167 alibaba.com g – ✓

206 npr.org g Janrain ✓

246 independent.co.uk GIGYA ✓

247 roblox.com g GIGYA ✓

265 latimes.com g – ➠

317 cbsnews.com g CBS ✓

327 marriott.com g GIGYA ✓

330 digg.com – ➠

364 ups.com g GIGYA ✓

366 coursera.org – ✓

463 cbc.ca g LoginRadius ✓

479 zdnet.com g CBS ✓

643 mirror.co.uk g LoginRadius ✓

685 notion.so – ✓

697 ria.ru g – ➠

801 seekingalpha.com – ➠

812 ozon.ru – ✓

824 express.co.uk g LoginRadius ✓

971 vnexpress.net g – ➠

997 technologyreview.com g – ✓∑
24 44 11 12 12 6 19 23 5 3 2 17|2|5 10|14 24

: Vulnerable. : Exploitation successful. : Exploitation requires minor changes. ✓: Vulnerability fixed.
: Not vulnerable. : Exploitation failed. ✓: Vulnerability acknowledged.
: Not applicable. : Exploitation not applicable. ➠: No response received until today.

Table 3: The dual-window SSO Security Evaluation. We found that 24 of 77 websites (31%) with manual dual-window SSO

integrations are vulnerable to the Wildcard Receiver Attack (WRA), Malicious Receiver Attack (MRA), and Malicious Initiator

Attack (MIA). The great majority of them (23) fail to protect the confidentiality of InBMs, resulting in Token Leaks (TLs) and

Privacy Leaks (PLs) with confirmed account takeovers on 17 sites. Yet, 6 sites fail to verify the authenticity of InBMs, enabling

Cross-Site Account Signin (XSAS), Cross-Site Account Linking (XSAL), and XSS in 5, 3, and 2 cases, respectively.

1563

nytimes.com
aliexpress.com
aparat.com
cnet.com
alibaba.com
npr.org
independent.co.uk
roblox.com
latimes.com
cbsnews.com
marriott.com
digg.com
ups.com
coursera.org
cbc.ca
zdnet.com
mirror.co.uk
notion.so
ria.ru
seekingalpha.com
ozon.ru
express.co.uk
vnexpress.net
technologyreview.com

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Louis Jannett, Vladislav Mladenov, Christian Mainka, and Jörg Schwenk

7.1 Insecurity of Manual Integrations

In Table 3, we summarize the vulnerabilities in the SSO landscape.
We found 49 of 77 websites (64%) with manual integrations of dual-
window SSO using a security-relevant InBC technique. Remarkably,
almost every second site (24 of 49, 49%) failed to implement them
securely. The remaining 28 sites (36%) used safe, same-origin InBCs.
Notably, 11 websites suffered from flaws in 4 SSO as a Service
(SSOaaS) providers. They offer an intermediate brokerage service
between the SPs and IdPs. In such cases, the SPs and IdPs are
relaying the login requests and login responses through the broker.
One advantage is that SPs can support multiple IdPs even though
they implement only one broker. We manually verified each issue
and found that in 10 cases, the automatic PoC works out of the
box. The remaining PoCs required minor adjustments, which we
summarize in this section. Further, we could redeem the leaked
tokens on 17 sites, confirming account takeovers. We reported all
vulnerabilities as part of our responsible disclosure process and see
them being acknowledged, fixed, and thankfully rewarded.

Wildcard Receiver Attack. Surprisingly, 12 websites sent to-
kens or private data in postMessages without specifying a receiver
origin. Prominent examples were alibaba.com, aliexpress.com, and
latimes.com. Leaked data commonly included the user’s id, name,
email, and profile picture (i.e., coursera.org, ria.ru, seekingalpha.
com). We found digg.com leaking a user’s profile information,
such as subscriptions. On notion.so, Google’s entire login response
was leaked. Others like alibaba.com, aliexpress.com, aparat.com,
ozon.ru, and vnexpress.net leaked opaque bearer authentication
tokens. Surprisingly, technologyreview.com leaked a “state key”
and latimes.com leaked a “signon token”, which we were unable to
redeem. The automated PoC could trivially exploit the WRA on 11
of 12 websites. Our investigations on aliexpress.com revealed that
the URL starting SSO contained a boolean reload parameter. If set
to true, the token was sent in a secure JS Navigate to the token re-
demption endpoint. If set to false, a postMessage was leaked which
however only contained an irrelevant URL and not the token. For
leaking the token, we had to manually apply JavaScript-encoding
to the reload=false parameter in the PoC.

Malicious Receiver Attack. A total of 12 websites failed to
verify the receiver’s origin. For instance, if the login popup of
alibaba.com received a “ping”message via postMessage, it responded
to its unverified initiator with a postMessage containing the token.
The ria.ru site was similarly affected, but instead of an authentica-
tion token, the user’s profile data and a CSRF token were leaked.
In both cases, the PoC worked out of the box as it fully emulates
all postMessages, including the “ping” postMessages. The MRA
also affected 11 websites integrating the brokering services. To
exploit CBS Corporation (CBS), we had to embed an additional
“proxy iframe” on the PoC website. We set the iframe’s unveri-
fied xdm_e query parameter to the PoC’s origin. The login popup
securely sends the token to the iframe’s callback. However, the
iframe uses postMessage to relay the token to the PoC website. It
sets the receiver origin to the polluted, unverified xdm_e param-
eter. To exploit Janrain by Akamai (Janrain), we had to set the
unverified xdReceiver query parameter, which is contained in the
URL starting the SSO, to the PoC’s origin. We proceeded similar
with the apikey and callback parameters of LoginRadius. GIGYA

by SAP (GIGYA) allowed us to append a malicious origin to the
trusted receiver’s origin via the URL’s user:pwd@host component
(i.e., sp.com@attacker.com).

Malicious Initiator Attack. Compared to the WRA and MRA,
we only found MIAs on 6 websites. These results are in line with
Steffens et al.’s [64] large-scale analyses of postMessage receivers.
They similarly showed that the majority of the initiator origin
checks are secure. Still, nytimes.com redirects its users once the SSO
flow terminates. Therefore, a postMessage containing the redirection
URL is sent to the receiver, which assigns it to its window.location
without verifying the initiator’s origin. In the PoC, we replaced the
honest redirection URL with a javascript:alert(1) URL to trigger
the XSS. Similarly, alibaba.com assigns a received token URL to
an iframe for establishing the user’s session. They did not validate
the initiator’s origin but checked whether the lower-cased URL
contains "javascript:". In the PoC, we replaced the honest token
URL with the attacker’s token URL (→ XSAS) or a java\nscript

:alert(1) URL (→ XSS) that bypasses the check. LoginRadius and
aparat.com both verify the initiator’s origin of the login response
using the indexOf() and includes() functions, respectively. We
deployed the PoC to a domain like trusted.com.attacker.com, which
effectively bypasses both methods. LoginRadius also features an
account linking process, thus, XSALs are feasible.

7.2 Security of SDKs

Distinct could not find issues with the SDKs’ InBCs techniques.
All SDKs properly implement the required security checks. We
expected this robust security level from SDKs, since Apple, Face-
book, and Google probably have the required know-how to imple-
ment InBC securely. Yet, FLg exhibited a major deficiency in one
of its security checks in the past [59]. It used the regular expres-
sion ^https:\/\/.*facebook.com\$ to whitelist initiators. However,
attackerfacebook.com is a valid initiator that bypasses this check.

8 RELATEDWORK

Textbook Single Sign-On Security. A large and growing body
of literature has investigated the security of web SSO in textbook
implementations [3, 5, 11, 16, 17, 34, 35, 36, 37, 39, 42, 45, 61, 68,
70, 71, 73, 75, 76] and specifications [13, 15, 25, 44, 53]. There is
also a considerable amount of literature on SSO in mobile applica-
tions [6, 60, 70, 72, 77]. The potential of SSO vulnerability scanners
performing automated security assessments of SSO implementa-
tions has been in the scope of [3, 37, 71, 73, 75, 76, 77]. Thereby,
threats like token and privacy leaks, XSAS (“session swapping”),
and XSAL have been gaining much attention. However, prior tools
and analyses of textbook SSO primarly inspected the HTTP traffic.
We show that they missed crucial SSO messages exchanged via
InBCs and prove the existence of new threats in dual-window SSO
by considering IdPs and, for the first time, SPs.

Dual-Window Single Sign-On Security. We identified prior
work that investigated SSO protocols involving iframes, popups,
and InBCs [12, 14, 19, 23, 71]. They are summarized in Table 1. We
discuss and compare them aspect-wise in the following.

(1) Technology and Usage. Hanna et al. [23] reverse engineered
the nowadays obsolete, proprietary SSO protocols Facebook Con-
nect (FBC) and Google Friend Connect (GFC). Wang et al. [71]

1564

alibaba.com
aliexpress.com
latimes.com
coursera.org
ria.ru
seekingalpha.com
seekingalpha.com
digg.com
notion.so
alibaba.com
aliexpress.com
aparat.com
ozon.ru
vnexpress.net
technologyreview.com
latimes.com
aliexpress.com
alibaba.com
ria.ru
nytimes.com
alibaba.com
aparat.com
trusted.com.attacker.com
attackerfacebook.com

DISTINCT: Identity Theft using In-Browser Communications in Dual-Window Single Sign-On CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

examined FBC. Fett et al. [14] investigated BrowserID. This proto-
col was deprecated in 2016 due to a low adoption rate [31]. Later,
they proposed a new SSO scheme called SPRESSO [12]. Unfortu-
nately, it did not reach real-world adoption until today. Similar to
Guan et al. [19], we consider OAuth and OIDC, which are widely
deployed and in the scope of current SSO research [16, 22, 39, 54].

(2) Scope. Hanna et al. [23] and Guan et al. [19] studied post-
Message in SSO implementations of IdPs. Wang et al. [71] focused
on the IdP’s Flash-based InBC. Fett et al. [12, 14] formally examined
the underlying protocols that use postMessage. We are the first to
investigate SP implementations of dual-window SSO. Our results
show that SPs miss crucial security checks (cf. §7.1), whereas IdPs
protect themselves (cf. §7.2). We consider further InBC techniques
like Channel Messsaging, JS Navigate, and same-origin techniques.

(3) IFrame / Popup. The protocols and flows studied in [12, 14,
19, 23, 71] use iframes and popups. However, they deviate from the
state-of-the-art protocols and dual-window SSO flows described in
this paper. For instance, BrowserID [14] and SPRESSO [12] require
both, iframes and popups. In contrast, for OAuth and OIDC, only
popups (§3.1) or iframes (§3.2) are required. Guan et al. [19] depicts
the iframe flow without user interaction, which we describe in §3.2.
We are the first to introduce the iframe flow with user interaction
and both popup flows that are based on OAuth and OIDC.

(4) Threat Model. Fett et al. [12, 14] proposed an advanced web
attacker model, which, inter alia, considers new browser technolo-
gies. They used their model to analyze BrowserID and SPRESSO.
The “DangerNeighbor” threat [19, 20, 21] uses a strong attacker
model that presumes the attacker to have JavaScript execution on
the SP, for example, XSS. This assumption inherently breaks the
SOP and all SSO protocols relying on InBCs. Similar to Hanna et
al. [23] and Wang et al. [71], we used the standard web attacker
model [1] allowing us to exploit our findings in Guan et al.’s [19,
20, 21] threat model, but not vice versa.

(5) Analysis Methodology and Findings. Hanna et al. [23] manu-
ally analyzed and reverse engineered the source code of the pro-
prietary protocols FBC and GFC. They manually verified the ex-
ploitability of their findings, for instance, XSS, privacy leaks, and
identity theft. Wang et al. [71] manually discovered that FBC also
uses Adobe Flash for InBC and applied a tweak to send the secret
token to a malicious, cross-origin site. Guan et al. [19] manually
evaluated the real-world prevalence of postMessage in SSO. They
did not search for missed postMessage checks but uncovered iden-
tity theft and privacy leaks if the attacker has JavaScript execution
on the SP. Fett et al. [12, 14] carried out manual protocol analyses
of BrowserID and SPRESSO. They formally proved the security
and privacy of SPRESSO but found BrowserID to be vulnerable to
identity theft and token injection. We instead used Distinct for
automated security analyses of dual-window SSO implementations
and automated PoC generation.

PostMessage Security. Son et al. [63] showed that postMessage
receivers do not verify the initiator origin safely. Stock et al. [66]
identified that 26% of the Alexa top 500 sites receiving postMessages
did not verify their initiators. Steffens et al. [64] extended the ob-
servations and proposed an automated framework that systemati-
cally analyzes and exploits postMessage receivers at scale. Meiser et
al. [52] analyzed postMessage receivers to build an interconnected
graph of their trust relations. We, inter alia, study postMessage

receivers in SSO and discuss their impact on the user’s account
integrity that goes beyond DOM-XSS.

Barth et al. [4] secured the confidentiality of the postMessage
API. Stock et al. [66] showed that nearly half of their sites used
postMessage with a wildcard. Sudhodanan et al. [67] associated
postMessage with XS-Leaks, putting forth the observation that ini-
tiators may leak data. We connect these observations to SSO and
demonstrate that leaky postMessages enable serious identity thefts.

9 CONCLUSION

This paper presents the first empirical analysis of OAuth and OIDC
using dual-window SSO flows to identify threats that In-Browser
Communications impose. We shed light on dual-window SSO us-
ing iframes and popups, which discern them from standardized
textbook flows. Our landscape evaluation proves the prevalence of
dual-window SSO: 56% of the Tranco top 1k websites with SSO im-
plement dual-window flows, while 49% implement textbook flows.
Surprisingly, every second website with dual-window SSO did not
use secure SDKs, but implemented dual-window flows manually.

Root Causes. We could identify three primary security threats
in dual-window SSO, which affected 31% of the evaluated sites with
custom integrations. We responsibly reported all issues, and the
developers reacted thankfully, resolving them. We can trace back
all threats to two main causes regarding the unsafe use of InBCs.

(1) The InBC initiator does not enforce the message’s receiver
when sending the message. We have seen two cases: either the
initiator does not specify the receiver at all (using a wildcard →
§4.3 WRA) or the initiator simply reflects the receiver’s origin from
a previous message (→ §4.3 MRA). Interestingly, attackers can
abuse this flaw either on the IdP-side (→ §3.1 direct popup-flow)
or on the SP-side (→ §3.1 relayed popup-flow).

(2) The InBC receiver does not verify the message’s initiator
when receiving the message (→ §4.3 MIA). Although this case was
considered in web-security [4, 66, 67], we could still identify this
flaw as a severe threat for dual-window SSO.

Lessons Learned. The lessons learned from our investigation
can be summarized as follows:

(1) Developers implement custom dual-window flows but they
seem to overlook that SDKs implement dual-window flows securely.
If possible, we recommend the use of safe, same-origin InBC tech-
niques, like JS Direct Access and JS Storage.

(2) The SSO community should standardize dual-window flows
relying on InBC and clearly address the security threats described
in this paper. Recent attempts have been published in drafts [26, 30,
74], but we see none of them being actively worked on.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and shepherd for their valuable
feedback. Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strat-
egy - EXC 2092 CASA - 390781972. Louis Jannett was supported
by the German Federal Ministry of Economics and Technology
(BMWi) project “Industrie 4.0 Recht-Testbed” (13I40V002C).

REFERENCES

[1] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell, and Dawn
Song. 2010. Towards a Formal Foundation of Web Security. In 2010 23rd IEEE

1565

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Louis Jannett, Vladislav Mladenov, Christian Mainka, and Jörg Schwenk

Computer Security Foundations Symposium. IEEE, Edinburgh, United Kingdom,
(July 2010), 290–304. isbn: 978-1-4244-7510-0. doi: 10.1109/CSF.2010.27.

[2] Apple Inc. 2022. Sign in with Apple | Developer Documentation. Retrieved
08/29/2022 from https://developer.apple.com/sign-in-with-apple/.

[3] Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan Venkatraman,
Prateek Saxena, Jun Sun, Yang Liu, Jin Song Dong, and B Guangdong. 2013.
AUTHSCAN: Automatic Extraction of Web Authentication Protocols from Im-
plementations. In Network and Distributed System Security Symposium (NDSS).

[4] Adam Barth, Collin Jackson, and John C. Mitchell. 2009. Securing Frame Com-
munication in Browsers. Communications of the ACM, 52, 6, (June 2009), 83–91.
issn: 0001-0782, 1557-7317. doi: 10.1145/1516046.1516066.

[5] Michele Benolli, Seyed Ali Mirheidari, Elham Arshad, and Bruno Crispo. 2021.
The Full Gamut of an Attack: An Empirical Analysis of OAuth CSRF in the
Wild. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 12756
LNCS. Springer International Publishing, 21–41. isbn: 9783030808242. doi:
10.1007/978-3-030-80825-9_2.

[6] Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. 2014. OAuth Demystified for Mobile Application Developers. In ACM
SIGSAC Conference on Computer and Communications Security. ACM, Scottsdale
Arizona USA, (November 3, 2014), 892–903. isbn: 978-1-4503-2957-6. doi: 10.
1145/2660267.2660323.

[7] 2022. Chrome DevTools Protocol | Documentation. Retrieved 08/01/2022 from
https://chromedevtools.github.io/devtools-protocol/.

[8] David G. Balash, Xiaoyuan Wu, Miles Grant, Irwin Reyes, and Adam J. Aviv.
2022. Security and Privacy Perceptions of Third-Party Application Access
for Google Accounts. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, (August 2022), 3397–3414. isbn: 978-1-
939133-31-1.

[9] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. 2020. The Cookie
Hunter: Automated Black-Box Auditing for Web Authentication and Autho-
rization Flaws. In ACM SIGSAC Conference on Computer and Communications
Security (CCS ’20). Association for Computing Machinery, Virtual Event, USA,
1953–1970. isbn: 9781450370899. doi: 10.1145/3372297.3417869.

[10] Facebook Inc. 2022. Facebook Login | Developer Documentation. Retrieved
08/29/2022 from https://developers.facebook.com/docs/facebook-login.

[11] Shehroze Farooqi, Fareed Zaffar, Nektarios Leontiadis, and Zubair Shafiq. 2017.
Measuring and Mitigating OAuth Access Token Abuse by Collusion Networks.
In Internet Measurement Conference (IMC ’17). Association for Computing
Machinery, New York, NY, USA, (November 1, 2017), 355–368. isbn: 978-1-
4503-5118-8. doi: 10.1145/3131365.3131404.

[12] Daniel Fett, Ralf Küesters, and Guido Schmitz. 2015. SPRESSO: A Secure,
Privacy-Respecting Single Sign-On System for the Web. In nd ACM SIGSAC
Conference on Computer and Communications Security - CCS ’15. ACM Press,
Denver, Colorado, USA, 1358–1369. isbn: 978-1-4503-3832-5. doi: 10.1145/
2810103.2813726.

[13] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. In ACM SIGSAC Conference on Computer and
Communications Security (CCS ’16). Association for Computing Machinery, Vi-
enna, Austria, 1204–1215. isbn: 9781450341394. doi: 10.1145/2976749.2978385.

[14] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2014. An Expressive Model for
the Web Infrastructure: Definition and Application to the Browser ID SSO
System. In 2014 IEEE Symposium on Security and Privacy. IEEE, San Jose, CA,
(May 2014), 673–688. isbn: 978-1-4799-4686-0. doi: 10.1109/SP.2014.49.

[15] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2017. The Web SSO Standard
OpenID Connect: In-Depth Formal Security Analysis and Security Guidelines.
In 2017 IEEE 30th Computer Security Foundations Symposium (CSF). IEEE, 189–
202. doi: 10.1109/CSF.2017.20.

[16] M. Ghasemisharif, C. Kanich, and J. Polakis. 2022. Towards Automated Auditing
for Account and SessionManagement Flaws in Single Sign-On Deployments. In
2022 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los
Alamitos, CA, USA, (May 2022), 1524–1524. doi: 10.1109/SP46214.2022.00095.

[17] Mohammad Ghasemisharif, Amrutha Ramesh, Stephen Checkoway, Chris
Kanich, and Jason Polakis. 2018. O Single Sign-Off, Where Art Thou? An Em-
pirical Analysis of Single Sign-On Account Hijacking and Session Management
on the Web. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, Baltimore, MD, (August 2018), 1475–1492. isbn: 978-1-939133-04-5.

[18] Google LLC. 2022. Google Identity | Developer Documentation. Retrieved
08/29/2022 from https://developers.google.com/identity.

[19] C. Guan, Y. Li, and K. Sun. 2017. Your Neighbors are Listening: Evaluating Post-
Message Use in OAuth. In 2017 IEEE Symposium on Privacy-Aware Computing
(PAC). (August 2017), 210–211. doi: 10.1109/PAC.2017.30.

[20] Chong Guan, Kun Sun, Lingguang Lei, Pingjian Wang, Yuewu Wang, and Wei
Chen. 2018. DangerNeighbor Attack: Information Leakage via postMessage
Mechanism in HTML5. Computers & Security, 80, (July 28, 2018), 291–305. issn:
01674048. doi: 10.1016/j.cose.2018.09.010.

[21] Chong Guan, Kun Sun, Zhan Wang, and WenTao Zhu. 2016. Privacy Breach
by Exploiting postMessage in HTML5: Identification, Evaluation, and Coun-
termeasure. In th ACM on Asia Conference on Computer and Communications
Security. ACM, Xi’an China, (May 30, 2016), 629–640. isbn: 978-1-4503-4233-9.
doi: 10.1145/2897845.2897901.

[22] Sven Hammann, Ralf Sasse, and David Basin. 2020. Privacy-Preserving OpenID
Connect. In th ACM Asia Conference on Computer and Communications Security
(ASIA CCS ’20). Association for Computing Machinery, Taipei, Taiwan, 277–
289. isbn: 9781450367509. doi: 10.1145/3320269.3384724.

[23] Steve Hanna, Eui Chul, Richard Shin, Devdatta Akhawe, Arman Boehm, Prateek
Saxena, and Dawn Song. 2010. The Emperor’s New APIs: On the (In)Secure
Usage of New Client-side Primitives. csberkeleyedu, (January 2010).

[24] Dick Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749. (October
2012). doi: 10.17487/RFC6749. https://rfc-editor.org/rfc/rfc6749.txt.

[25] Pili Hu, Ronghai Yang, Yue Li, and Wing Cheong Lau. 2014. Application Im-
personation: Problems of OAuth and API Design in Online Social Networks.
In Second Edition of the ACM Conference on Online Social Networks - COSN ’14.
ACM Press, Dublin, Ireland, 271–278. isbn: 978-1-4503-3198-2. doi: 10.1145/
2660460.2660463.

[26] Jacob Ideskog and Travis Spencer. 2021. OAuth 2.0 Assisted Token. Internet-
Draft draft-ideskog-assisted-token-05. Internet Engineering Task Force, (March 8,
2021). 20 pages. https://datatracker.ietf.org/doc/html/draft-ideskog-assisted-
token-05.

[27] Artur Janc andMikeWest. 2020. Oh, the Places You’ll Go! FindingOurWay Back
from theWeb Platform’s Ill-conceived Jaunts. In 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE. IEEE, (September 2020),
673–680. doi: 10.1109/eurospw51379.2020.00096.

[28] Hugo Jonker, Jelmer Kalkman, Benjamin Krumnow, Marc Sleegers, and Alan
Verresen. 2018. Shepherd: Enabling Automatic and Large-Scale Login Security
Studies. CoRR, abs/1808.00840. arXiv: 1808.00840.

[29] Lukas Knittel, Christian Mainka, Marcus Niemietz, Dominik Trevor Noß, and
Jörg Schwenk. 2021. XSinator.Com: From a Formal Model to the Automatic
Evaluation of Cross-Site Leaks in Web Browsers. In ACM SIGSAC Conference on
Computer and Communications Security (CCS ’21). Association for Computing
Machinery, Virtual Event, Republic of Korea, 1771–1788. isbn: 9781450384544.
doi: 10.1145/3460120.3484739.

[30] G. Kong, N. Agarwal, and W. Denniss. 2015. OAuth 2.0 IDP-IFrame-Based
Implicit Flow. Internet-Draft draft-guibinkong-oauth-idp-iframe-00. Internet
Engineering Task Force, (November 21, 2015). 21 pages. http://lists.openid.net/
pipermail/openid-specs-ab/Week-of-Mon-20151116/005865.html.

[31] Frederic Lardinois. 2014. Mozilla stops developing its persona sign-in sys-
tem due to low adoption. (March 2014). Retrieved 08/01/2022 from https :
//techcrunch.com/2014/03/08/mozilla-stops-developing-its-persona-sign-in-
system-because-of-low-adoption/.

[32] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In th Annual Network and Distributed
System Security Symposium (NDSS 2019). (February 2019). doi: 10.14722/ndss.
2019.23386.

[33] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 Million Flows Later
- Large-scale Detection of DOM-based XSS. In ACM SIGSAC Conference on
Computer & Communications Security - CCS ’13. ACM Press, Berlin, Germany,
1193–1204. isbn: 978-1-4503-2477-9. doi: 10.1145/2508859.2516703.

[34] Wanpeng Li and Chris J Mitchell. 2016. Analysing the Security of Google’s
implementation of OpenID Connect. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer, 357–376.

[35] Wanpeng Li and Chris J. Mitchell. 2014. Security Issues in OAuth 2.0 SSO
Implementations. In Information Security (Lecture Notes in Computer Science).
Sherman S. M. Chow, Jan Camenisch, Lucas C. K. Hui, and Siu Ming Yiu,
editors. Volume 8783. Springer International Publishing, Cham, 529–541. isbn:
978-3-319-13257-0. doi: 10.1007/978-3-319-13257-0_34.

[36] Wanpeng Li, Chris J. Mitchell, and Thomas Chen. 2018. Mitigating CSRF attacks
on OAuth 2.0 Systems. In 2018 16th Annual Conference on Privacy, Security and
Trust (PST), 1–5. doi: 10.1109/PST.2018.8514180.

[37] Wanpeng Li, Chris J. Mitchell, and Thomas Chen. 2019. OAuthGuard: Pro-
tecting User Security and Privacy with OAuth 2.0 and OpenID Connect. In th
ACM Workshop on Security Standardisation Research Workshop. Association
for Computing Machinery, (November 2019), 35–44. isbn: 9781450368322. doi:
10.1145/3338500.3360331. arXiv: 1901.08960.

[38] Wanpeng Li, Chris J. Mitchell, and Thomas Chen. 2018. Your Code Is My Code:
Exploiting a Common Weakness in OAuth 2.0 Implementations. In Conference:
2018 16th Annual Conference on Privacy, Security and Trust (PST). Volume 11286
LNCS. Springer Verlag, 24–41. isbn: 9783030032500. doi: 10.1007/978-3-030-
03251-7_3.

[39] Guannan Liu, Xing Gao, and Haining Wang. 2021. An Investigation of Identity-
Account Inconsistency in Single Sign-On. In Web Conference 2021. ACM, Ljubl-
jana Slovenia, (April 19, 2021), 105–117. isbn: 978-1-4503-8312-7. doi: 10.1145/
3442381.3450085.

1566

https://doi.org/10.1109/CSF.2010.27
https://developer.apple.com/sign-in-with-apple/
https://doi.org/10.1145/1516046.1516066
https://doi.org/10.1007/978-3-030-80825-9_2
https://doi.org/10.1145/2660267.2660323
https://doi.org/10.1145/2660267.2660323
https://chromedevtools.github.io/devtools-protocol/
https://doi.org/10.1145/3372297.3417869
https://developers.facebook.com/docs/facebook-login
https://doi.org/10.1145/3131365.3131404
https://doi.org/10.1145/2810103.2813726
https://doi.org/10.1145/2810103.2813726
https://doi.org/10.1145/2976749.2978385
https://doi.org/10.1109/SP.2014.49
https://doi.org/10.1109/CSF.2017.20
https://doi.org/10.1109/SP46214.2022.00095
https://developers.google.com/identity
https://doi.org/10.1109/PAC.2017.30
https://doi.org/10.1016/j.cose.2018.09.010
https://doi.org/10.1145/2897845.2897901
https://doi.org/10.1145/3320269.3384724
https://doi.org/10.17487/RFC6749
https://rfc-editor.org/rfc/rfc6749.txt
https://doi.org/10.1145/2660460.2660463
https://doi.org/10.1145/2660460.2660463
https://datatracker.ietf.org/doc/html/draft-ideskog-assisted-token-05
https://datatracker.ietf.org/doc/html/draft-ideskog-assisted-token-05
https://doi.org/10.1109/eurospw51379.2020.00096
https://arxiv.org/abs/1808.00840
https://doi.org/10.1145/3460120.3484739
http://lists.openid.net/pipermail/openid-specs-ab/Week-of-Mon-20151116/005865.html
http://lists.openid.net/pipermail/openid-specs-ab/Week-of-Mon-20151116/005865.html
https://techcrunch.com/2014/03/08/mozilla-stops-developing-its-persona-sign-in-system-because-of-low-adoption/
https://techcrunch.com/2014/03/08/mozilla-stops-developing-its-persona-sign-in-system-because-of-low-adoption/
https://techcrunch.com/2014/03/08/mozilla-stops-developing-its-persona-sign-in-system-because-of-low-adoption/
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1007/978-3-319-13257-0_34
https://doi.org/10.1109/PST.2018.8514180
https://doi.org/10.1145/3338500.3360331
https://arxiv.org/abs/1901.08960
https://doi.org/10.1007/978-3-030-03251-7_3
https://doi.org/10.1007/978-3-030-03251-7_3
https://doi.org/10.1145/3442381.3450085
https://doi.org/10.1145/3442381.3450085

DISTINCT: Identity Theft using In-Browser Communications in Dual-Window Single Sign-On CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[40] Torsten Lodderstedt, John Bradley, Andrey Labunets, and Daniel Fett. 2021.
OAuth 2.0 Security Best Current Practice. Internet-Draft draft-ietf-oauth-security-
topics-18. Internet Engineering Task Force, (April 13, 2021). 53 pages. https:
//datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-18.

[41] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. 2013. OAuth 2.0 Threat
Model and Security Considerations. RFC 6819. (January 2013). doi: 10.17487/
RFC6819. https://rfc-editor.org/rfc/rfc6819.txt.

[42] Christian Mainka, Vladislav Mladenov, Florian Feldmann, Julian Krautwald,
and Jörg Schwenk. 2014. Your Software at My Service: Security Analysis of SaaS
Single Sign-on Solutions in the Cloud. In th Edition of the ACM Workshop on
Cloud Computing Security (CCSW ’14). Association for Computing Machinery,
New York, NY, USA, 93–104. isbn: 978-1-4503-3239-2. doi: 10.1145/2664168.
2664172.

[43] Christian Mainka, Vladislav Mladenov, Tim Guenther, and Jörg Schwenk. 2015.
Automatic Recognition, Processing and Attacking of Single Sign-On Protocols
with Burp Suite. Open Identity Summit, 251, (October 2015), 117–131. issn:
16175468.

[44] Christian Mainka, Vladislav Mladenov, and Jörg Schwenk. 2016. Do Not Trust
Me: Using Malicious IdPs for Analyzing and Attacking Single Sign-on. In 2016
IEEE European Symposium on Security and Privacy (EuroS&P), 321–336. doi:
10.1109/EuroSP.2016.33.

[45] Christian Mainka, Vladislav Mladenov, Tobias Wich, and Jörg Schwenk. 2017.
SoK: Single Sign-On Security – An Evaluation of OpenID Connect. In 2017
IEEE European Symposium on Security and Privacy (EuroS&P), 251–266. doi:
10.1109/EuroSP.2017.32.

[46] MDN. 2021. Broadcast Channel API. Retrieved 10/28/2021 fromhttps://developer.
mozilla.org/en-US/docs/Web/API/Broadcast_Channel_API.

[47] MDN. 2021. Channel Messaging API. Retrieved 10/28/2021 from https : / /
developer.mozilla.org/en-US/docs/Web/API/Channel_Messaging_API.

[48] MDN. 2021. Creating and triggering events. (October 14, 2021). Retrieved
10/28/2021 from https://developer.mozilla.org/en-US/docs/Web/Events/
Creating_and_triggering_events.

[49] MDN. 2022. Proxy. MDN Web Docs. Retrieved 08/01/2022 from https : / /
developer.mozilla . org / en - US / docs /Web / JavaScript /Reference /Global _
Objects/Proxy.

[50] MDN. 2020. Same-Origin Policy. MDN Web Docs. Retrieved 09/26/2020 from
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy.

[51] MDN. 2021.Window.postMessage(). Retrieved 10/28/2021 fromhttps://developer.
mozilla.org/en-US/docs/Web/API/Window/postMessage.

[52] Gordon Meiser, Pierre Laperdrix, and Ben Stock. 2021. Careful Who You Trust:
Studying the Pitfalls of Cross-Origin Communication. In 2021 ACM Asia Con-
ference on Computer and Communications Security (ASIA CCS ’21). Associ-
ation for Computing Machinery, Virtual Event, Hong Kong, 110–122. isbn:
9781450382878. doi: 10.1145/3433210.3437510.

[53] VladislavMladenov, ChristianMainka, and Jörg Schwenk. 2016. On the Security
of Modern Single Sign-On Protocols – Second-Order Vulnerabilities in OpenID
Connect, (January 7, 2016).

[54] Srivathsan G. Morkonda, Sonia Chiasson, and Paul C. van Oorschot. 2021.
Empirical Analysis and Privacy Implications in OAuth-Based Single Sign-On
Systems. In 20th Workshop on Workshop on Privacy in the Electronic Society
(WPES ’21). Association for Computing Machinery, Virtual Event, Republic of
Korea, 195–208. isbn: 9781450385275. doi: 10.1145/3463676.3485600.

[55] OWASP. 2021. Zed Attack Proxy (ZAP). Retrieved 12/02/2021 from https :
//www.zaproxy.org/.

[56] Portswigger. 2021. DOM Invader. Retrieved 12/02/2021 fromhttps://portswigger.
net/burp/documentation/desktop/tools/dom-invader/messages-view.

[57] Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2019. OAUTHLINT: An Empirical
Study on OAuth Bugs in Android Applications. In 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE, (November
2019), 293–304. isbn: 978-1-7281-2508-4. doi: 10.1109/ASE.2019.00036.

[58] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. 2014.
OpenID Connect Core 1.0 incorporating errata set 1. (November 8, 2014). Re-
trieved 10/27/2021 from https : / /openid .net / specs /openid- connect - core-
1_0.html.

[59] Youssef Sammouda. 2020. Bad regex used in Facebook Javascript SDK leads to
account takeovers in websites that included it. (December 31, 2020). Retrieved
08/29/2022 from https://ysamm.com/?p=510.

[60] Giada Sciarretta, Roberto Carbone, Silvio Ranise, and Alessandro Armando.
2017. Anatomy of the Facebook Solution for Mobile Single Sign-on: Security
Assessment and Improvements. Computers & Security, 71, (November 2017),
71–86. issn: 01674048. doi: 10.1016/j.cose.2017.04.011.

[61] Ethan Shernan, Henry Carter, Dave Tian, Patrick Traynor, and Kevin Butler.
2015. More Guidelines Than Rules: CSRF Vulnerabilities from Noncompliant
OAuth 2.0 Implementations. In Detection of Intrusions and Malware, and Vul-
nerability Assessment (Lecture Notes in Computer Science). Magnus Almgren,
Vincenzo Gulisano, and Federico Maggi, editors. Volume 9148. Springer Inter-
national Publishing, Cham, 239–260. isbn: 978-3-319-20550-2. doi: 10.1007/978-
3-319-20550-2_13.

[62] Shangcheng Shi, Xianbo Wang, and Wing Cheong Lau. 2019. MoSSOT: An
Automated Blackbox Tester for Single Sign-On Vulnerabilities in Mobile Appli-
cations. In ACM Asia Conference on Computer and Communications Security.
ACM, New York, NY, USA, (July 2019), 269–282. isbn: 9781450367523. doi:
10.1145/3321705.3329801.

[63] Sooel Son and Vitaly Shmatikov. 2013. The Postman Always Rings Twice:
Attacking and Defending postMessage in HTML5 Websites. In 20th Annual
Network and Distributed System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013. The Internet Society.

[64] Marius Steffens and Ben Stock. 2020. PMForce: Systematically Analyzing post-
Message Handlers at Scale. In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’20). Association for Computing Machinery, New
York, NY, USA, 493–505. isbn: 978-1-4503-7089-9. doi: 10.1145/3372297.3417267.

[65] Thomas Steiner. 2021. Trust Is Good, Observation Is Better: Intersection Ob-
server V2. web.dev. (February 26, 2021). Retrieved 06/28/2021 from https :
//web.dev/intersectionobserver-v2/.

[66] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. 2017. How the
Web Tangled Itself: Uncovering the History of Client-Side Web (In)Security. In
26th USENIX Security Symposium (USENIX Security 17). USENIX Association,
Vancouver, BC, (August 2017), 971–987. isbn: 978-1-931971-40-9.

[67] Avinash Sudhodanan, Soheil Khodayari, and Juan Caballero. 2020. Cross-Origin
State Inference (COSI) Attacks: Leaking Web Site States through XS-Leaks.
(January 31, 2020). arXiv: 1908.02204 [cs]. Retrieved 05/21/2021 from http:
//arxiv.org/abs/1908.02204.

[68] San-Tsai Sun and Konstantin Beznosov. 2012. The Devil is in the (Implementa-
tion) Details: An Empirical Analysis of OAuth SSO Systems. In 2012 ACM
Conference on Computer and Communications Security (CCS ’12). Associa-
tion for Computing Machinery, Raleigh, North Carolina, USA, 378–390. isbn:
9781450316514. doi: 10.1145/2382196.2382238.

[69] Terjanq. 2022. Terjanq/same-origin-XSS: Same origin XSS challenge. Retrieved
08/16/2022 from https://github.com/terjanq/same-origin-xss.

[70] Hui Wang, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2016. The Achilles Heel
of OAuth: A Multi-Platform Study of OAuth-Based Authentication. In 32nd
Annual Conference on Computer Security Applications (ACSAC ’16). Associa-
tion for Computing Machinery, Los Angeles, California, USA, 167–176. isbn:
9781450347716. doi: 10.1145/2991079.2991105.

[71] Rui Wang, Shuo Chen, and XiaoFeng Wang. 2012. Signing Me onto Your Ac-
counts through Facebook and Google: a Traffic-Guided Security Study of Com-
mercially Deployed Single-Sign-On Web Services. In 33th IEEE Symposium on
Security and Privacy (S&P 2012). IEEE, editor. doi: 10.1109/SP.2012.30.

[72] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans, and Yuri
Gurevich. 2013. Explicating SDKs: Uncovering Assumptions Underlying Se-
cure Authentication and Authorization. In 22nd USENIX Security Symposium
(USENIX Security 13). USENIX Association, Washington, D.C., (August 2013),
399–314. isbn: 978-1-931971-03-4.

[73] HanlinWei, Behnaz Hassanshahi, Guangdong Bai, Padmanabhan Krishnan, and
Kostyantyn Vorobyov. 2021. MoScan: A Model-Based Vulnerability Scanner
for Web Single Sign-On Services. In ACM SIGSOFT International Symposium on
Software Testing and Analysis. ACM, Virtual Denmark, (July 11, 2021), 678–681.
isbn: 978-1-4503-8459-9. doi: 10.1145/3460319.3469081.

[74] Toru Yamaguchi, Nat Sakimura, and Nov Matake. 2015. OAuth 2.0 Web Mes-
sage Response Mode. Internet-Draft draft-sakimura-oauth-wmrm-00. Internet
Engineering Task Force, (October 18, 2015). 17 pages. https://datatracker.ietf.
org/doc/html/draft-sakimura-oauth-wmrm-00.

[75] Ronghai Yang, Guanchen Li, Wing Cheong Lau, Kehuan Zhang, and Pili Hu.
2016. Model-based Security Testing: an Empirical Study on OAuth 2.0 Imple-
mentations. In ACM on Asia Conference on Computer and Communications
Security - ASIA CCS ’16. ACM Press, Xi’an, China, 651–662. isbn: 978-1-4503-
4233-9. doi: 10.1145/2897845.2897874.

[76] Yuchen Zhou and David Evans. 2014. SSOScan: Automated Testing of Web
Applications for Single Sign-On Vulnerabilities. In 23rd USENIX Security Sym-
posium (USENIX Security 14). USENIX Association, San Diego, CA, (August
2014), 495–510. isbn: 978-1-931971-15-7.

[77] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. 2017. AUTHSCOPE: To-
wards Automatic Discovery of Vulnerable Authorizations in Online Services.
In ACM SIGSAC Conference on Computer and Communications Security. ACM,
Dallas Texas USA, (October 30, 2017), 799–813. isbn: 978-1-4503-4946-8. doi:
10.1145/3133956.3134089.

[78] Karsten Meyer zu Selhausen and Daniel Fett. 2022. OAuth 2.0 Authorization
Server Issuer Identification. RFC 9207. (March 2022). doi: 10.17487/RFC9207.
https://www.rfc-editor.org/info/rfc9207.

[79] Ivan Zuzak, Marko Ivankovic, and Ivan Budiselic. 2011. A Classification Frame-
work for Web Browser Cross-Context Communication. arXiv:1108.4770 [cs],
(August 2011). arXiv: 1108.4770 [cs].

1567

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-18
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-18
https://doi.org/10.17487/RFC6819
https://doi.org/10.17487/RFC6819
https://rfc-editor.org/rfc/rfc6819.txt
https://doi.org/10.1145/2664168.2664172
https://doi.org/10.1145/2664168.2664172
https://doi.org/10.1109/EuroSP.2016.33
https://doi.org/10.1109/EuroSP.2017.32
https://developer.mozilla.org/en-US/docs/Web/API/Broadcast_Channel_API
https://developer.mozilla.org/en-US/docs/Web/API/Broadcast_Channel_API
https://developer.mozilla.org/en-US/docs/Web/API/Channel_Messaging_API
https://developer.mozilla.org/en-US/docs/Web/API/Channel_Messaging_API
https://developer.mozilla.org/en-US/docs/Web/Events/Creating_and_triggering_events
https://developer.mozilla.org/en-US/docs/Web/Events/Creating_and_triggering_events
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://doi.org/10.1145/3433210.3437510
https://doi.org/10.1145/3463676.3485600
https://www.zaproxy.org/
https://www.zaproxy.org/
https://portswigger.net/burp/documentation/desktop/tools/dom-invader/messages-view
https://portswigger.net/burp/documentation/desktop/tools/dom-invader/messages-view
https://doi.org/10.1109/ASE.2019.00036
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://ysamm.com/?p=510
https://doi.org/10.1016/j.cose.2017.04.011
https://doi.org/10.1007/978-3-319-20550-2_13
https://doi.org/10.1007/978-3-319-20550-2_13
https://doi.org/10.1145/3321705.3329801
https://doi.org/10.1145/3372297.3417267
https://web.dev/intersectionobserver-v2/
https://web.dev/intersectionobserver-v2/
https://arxiv.org/abs/1908.02204
http://arxiv.org/abs/1908.02204
http://arxiv.org/abs/1908.02204
https://doi.org/10.1145/2382196.2382238
https://github.com/terjanq/same-origin-xss
https://doi.org/10.1145/2991079.2991105
https://doi.org/10.1109/SP.2012.30
https://doi.org/10.1145/3460319.3469081
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-wmrm-00
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-wmrm-00
https://doi.org/10.1145/2897845.2897874
https://doi.org/10.1145/3133956.3134089
https://doi.org/10.17487/RFC9207
https://www.rfc-editor.org/info/rfc9207
https://arxiv.org/abs/1108.4770

	Abstract
	1 Introduction
	2 Background: Textbook SSO Flows
	3 Dual-Window Single Sign-On Flows
	3.1 Popup-Based Single Sign-On Flows
	3.2 IFrame-Based Single Sign-On Flows
	3.3 In-Browser Communication Techniques

	4 Security in Dual-Window SSO
	4.1 Threat Model
	4.2 Security of InBC Techniques
	4.3 Attacks in Dual-Window Single Sign-On

	5 Distinct: Dynamic In-Browser Single Sign-On Tracer Inspecting Novel Communication Techniques
	5.1 Design and Architecture
	5.2 Live-Monitor
	5.3 Communication-Inspector
	5.4 Limitations

	6 Evaluation: Dual-Window Single Sign-On Landscape
	6.1 Part 1: Buttons starting SSO Flows
	6.2 Part 2: Websites with SSO Flows

	7 Evaluation: Dual-Window Single Sign-On Security
	7.1 Insecurity of Manual Integrations
	7.2 Security of SDKs

	8 Related Work
	9 Conclusion
	Acknowledgments

